MHD turbulence and the heating of astrophysical plasmas

被引:16
|
作者
Velli, M [1 ]
机构
[1] Univ Florence, Dipartimento Astron & Sci Spazio, I-50121 Florence, Italy
[2] Jet Propuls Lab, Pasadena, CA USA
关键词
D O I
10.1088/0741-3335/45/12A/014
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Magnetohydrodynamic (MHD) turbulence plays a major role in the dynamics and thermodynamics of astrophysical plasmas in many environments and over a wide range of scales and parameters: primary examples are the heating of stellar and accretion disk coronae, acceleration of stellar winds, and star formation in molecular clouds. In the case of the solar wind and corona in situ measurements and remote-sensing observations have given the most detailed experimental knowledge of the interplay between large-scale driving forces, the development of a turbulent cascade, and the collisionless kinetics of dissipation, than in any other natural magnetized plasma environment (with the possible exception of the earth's magnetosphere). The questions of coronal and solar wind acceleration will be reviewed here within the general context of MHD turbulence and nonlinear interactions, from the large-scale energy sources and driving to the dissipation scales dominated by wave-particle interactions, from the special role of Alfven waves to the naturally intermittent nature of coronal energy release and solar flares.
引用
收藏
页码:A205 / A216
页数:12
相关论文
共 50 条
  • [21] Comment on "Kinetic Simulations of Magnetized Turbulence in Astrophysical Plasmas'' - Reply
    Howes, G. G.
    Cowley, S. C.
    Dorland, W.
    Hammett, G. W.
    Quataert, E.
    Schekochihin, A. A.
    Tatsuno, T.
    PHYSICAL REVIEW LETTERS, 2008, 101 (14)
  • [22] PHOENIX: MHD spectral code for rotating laboratory and gravitating astrophysical plasmas
    Blokland, J. W. S.
    van der Holst, B.
    Keppens, R.
    Goedbloed, J. P.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 226 (01) : 509 - 533
  • [23] Nonlinear magnetic field enhancement and turbulence in laboratory and astrophysical plasmas
    Tiwary, Prem Pyari
    Modi, K. V.
    Sharma, Swati
    Singh, Ram Kishor
    Uma, R.
    Sharma, R. P.
    PHYSICS OF PLASMAS, 2016, 23 (03)
  • [24] Three-Dimensional Magnetic Reconnection in Astrophysical Plasmas - MHD Approach
    A. Otto
    Astrophysics and Space Science, 1998, 264 : 17 - 24
  • [25] Three-dimensional magnetic reconnection in astrophysical plasmas - MHD approach
    Otto, A
    ASTROPHYSICS AND SPACE SCIENCE, 1998, 264 (1-4) : 17 - 24
  • [26] The parker scenario for coronal heating as an MHD turbulence problem
    Rappazzo, A. F.
    Velli, M.
    Einaudi, G.
    SUBSURFACE AND ATMOSPHERIC INFLUENCES ON SOLAR ACTIVITY, 2008, 383 : 353 - +
  • [27] Forced MHD turbulence simulations for coronal loop heating
    Romeou, Z.
    Velli, M.
    Einaudi, G.
    RECENT ADVANCES IN ASTRONOMY AND ASTROPHYSICS, 2006, 848 : 105 - +
  • [28] Coronal heating, weak MHD turbulence, and scaling laws
    Rappazzo, A. F.
    Velli, M.
    Einaudi, G.
    Dahlburg, R. B.
    ASTROPHYSICAL JOURNAL, 2007, 657 (01): : L47 - L51
  • [29] CORONAL HEATING BY SELECTIVE DECAY OF MHD-TURBULENCE
    GOMEZ, D
    FONTAN, CF
    SOLAR PHYSICS, 1988, 116 (01) : 33 - 44
  • [30] Characterizing electrostatic turbulence in tokamak plasmas with high MHD activity
    Guimaraes-Filho, Z. O.
    dos Santos Lima, G. Z.
    Caldas, I. L.
    Viana, R. L.
    Nascimento, I. C.
    Kuznetsov, Yu K.
    XI LATIN AMERICAN WORKSHOP ON NONLINEAR PHENOMENA, 2010, 246