Structured Attention Guided Convolutional Neural Fields for Monocular Depth Estimation

被引:250
|
作者
Xu, Dan [1 ]
Wang, Wei [1 ]
Tang, Hao [1 ]
Liu, Hong [2 ]
Sebe, Nicu [1 ]
Ricci, Elisa [1 ,3 ]
机构
[1] Univ Trento, Multimedia & Human Understanding Grp, Trento, Italy
[2] Peking Univ, Shenzhen Grad Sch, Key Lab Machine Percept, Beijing, Peoples R China
[3] Fdn Bruno Kessler, Technol Vis Grp, Trento, Italy
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR.2018.00412
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent works have shown the benefit of integrating Conditional Random Fields (CRFs) models into deep architectures for improving pixel-level prediction tasks. Following this line of research, in this paper we introduce a novel approach for monocular depth estimation. Similarly to previous works, our method employs a continuous CRF to fuse multi-scale information derived from different layers of a front-end Convolutional Neural Network (CNN). Differently from past works, our approach benefits from a structured attention model which automatically regulates the amount of information transferred between corresponding features at different scales. Importantly, the proposed attention model is seamlessly integrated into the CRF allowing end-to-end training of the entire architecture. Our extensive experimental evaluation demonstrates the effectiveness of the proposed method which is competitive with previous methods on the KITH benchmark and outperforms the state of the art on the NYU Depth V2 dataset.
引用
收藏
页码:3917 / 3925
页数:9
相关论文
共 50 条
  • [21] Structured Adversarial Training for Unsupervised Monocular Depth Estimation
    Mehta, Ishit
    Sakurikar, Parikshit
    Narayanan, P. J.
    2018 INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2018, : 314 - 323
  • [22] Multi-Scale Spatial Attention-Guided Monocular Depth Estimation With Semantic Enhancement
    Xu, Xianfa
    Chen, Zhe
    Yin, Fuliang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 8811 - 8822
  • [23] Trap Attention: Monocular Depth Estimation with Manual Traps
    Ning, Chao
    Gan, Hongping
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 5033 - 5043
  • [24] Unsupervised Monocular Depth Estimation With Channel and Spatial Attention
    Wang, Zhuping
    Dai, Xinke
    Guo, Zhanyu
    Huang, Chao
    Zhang, Hao
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (06) : 7860 - 7870
  • [25] Attention Mechanism Used in Monocular Depth Estimation: An Overview
    Li, Yundong
    Wei, Xiaokun
    Fan, Hanlu
    APPLIED SCIENCES-BASEL, 2023, 13 (17):
  • [26] Monocular depth estimation with geometrical guidance using a multi-level convolutional neural network
    Amirkolaee, Hamed Amini
    Arefi, Hossein
    APPLIED SOFT COMPUTING, 2019, 84
  • [27] Dual-Attention Mechanism for Monocular Depth Estimation
    Chiu, Chui-Hong
    Astuti, Lia
    Lin, Yu-Chen
    Hung, Ming-Ku
    2024 16TH INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING, ICCAE 2024, 2024, : 456 - 460
  • [28] Lightweight Monocular Depth Estimation through Guided Decoding
    Rudolph, Michael
    Dawoud, Youssef
    Gueldenring, Ronja
    Nalpantidis, Lazaros
    Belagiannis, Vasileios
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022, : 2344 - 2350
  • [29] Lightweight Monocular Depth Estimation with an Edge Guided Network
    Dong, Xingshuai
    Garratt, Matthew A.
    Anavatti, Sreenatha G.
    Abbass, Hussein A.
    Dong, Junyu
    2022 17TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2022, : 204 - 210
  • [30] Monocular 3D Object Detection with Decoupled Structured Polygon Estimation and Height-Guided Depth Estimation
    Cai, Yingjie
    Li, Buyu
    Jiao, Zeyu
    Li, Hongsheng
    Zeng, Xingyu
    Wang, Xiaogang
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 10478 - 10485