Experimental investigation of a vapour compression refrigeration system using R134a/Nano-oil mixture

被引:45
|
作者
Nair, Vipin [1 ]
Parekh, A. D. [1 ]
Tailor, P. R. [1 ]
机构
[1] Sardar Vallabhbhai Natl Inst Technol, Dept Mech Engn, Refrigerat & Air Conditioning Lab, Surat 395007, Gujarat, India
关键词
COP; Nanofluid; Nano-oil; Nanoparticles; R134a/PAG mixture; VCRS; HEAT-TRANSFER CHARACTERISTICS; THERMO-PHYSICAL PROPERTIES; ALUMINUM-OXIDE; PARTICLE-SIZE; NANO-OIL; PERFORMANCE; NANOFLUIDS; NANOPARTICLES; SIO2; NANOREFRIGERANTS;
D O I
10.1016/j.ijrefrig.2019.12.009
中图分类号
O414.1 [热力学];
学科分类号
摘要
The current research is focused on the application of nanoparticles in vapour compression refrigeration systems. The major aim of the study is to investigate the effects of nano-oil on various performance parameters of the vapour compression refrigeration systems such as refrigeration capacity, compressor power, compressor discharge temperature and last but not the least, the coefficient of performance (COP) of the refrigeration system. Nano-oil was prepared by dispersing Al2O3 nanoparticles in PAG oil. Al2O3 nanoparticles were chosen because of aluminium oxide's superior thermophysical properties and a low dielectric constant in comparison to other commonly used nanoparticles such as CuO and TiO2. The above-mentioned performance parameters were compared for broadly two different cases, viz., VCRS working on R134a/PAG mixture and VCRS working on R134a/PAG/Al2O3 (R134a/nano-oil) mixture. The system analysis was conducted at several evaporator temperatures ranging from -11 degrees C to 1 degrees C and at two different condenser temperatures, viz., 30 degrees C and 34 degrees C. The dispersion of nanoparticles into the compressor oil resulted in a higher degree of subcooling at the condenser exit. It was also found that the COP of the system increased by as much as 6.5 % due to the addition of nanoparticles in the system. (C) 2019 Elsevier Ltd and IIR. All rights reserved.
引用
收藏
页码:21 / 36
页数:16
相关论文
共 50 条
  • [41] Design of refrigeration system using refrigerant R134a for macro compartment
    Rani, M. F. H.
    Razlan, Z. M.
    Shahriman, A. B.
    Yong, C. K.
    Harun, A.
    Hashim, M. S. M.
    Faizi, M. K.
    Ibrahim, I.
    Kamarrudin, N. S.
    Saad, M. A. M.
    Zunaidi, I.
    Wan, W. K.
    Desa, H.
    INTERNATIONAL CONFERENCE ON APPLICATIONS AND DESIGN IN MECHANICAL ENGINEERING (ICADME 2017), 2017, 908
  • [42] Exergy analysis of R1234yf and R1234ze as R134a replacements in a two evaporator vapour compression refrigeration system
    Yataganbaba, Alptug
    Kilicarslan, Ali
    Kurtbas, Irfan
    INTERNATIONAL JOURNAL OF REFRIGERATION, 2015, 60 : 26 - 37
  • [43] Comparative Energetic, Exergetic, Environmental and Enviroeconomic Analysis of Vapour Compression Refrigeration Systems Using R515B as Substitute for R134a
    Yildirim, Ragip
    Sahin, Arzu Sencan
    Dikmen, Erkan
    INTERNATIONAL JOURNAL OF THERMODYNAMICS, 2022, 25 (01) : 125 - 133
  • [44] Optimal refrigerant charge and energy efficiency of an oil-free refrigeration system using R134a
    Li, Zhaohua
    Jiang, Hanying
    Chen, Xinwen
    Liang, Kun
    APPLIED THERMAL ENGINEERING, 2020, 164
  • [45] An experimental investigation of a R-134a ejector refrigeration system
    Garcia del Valle, J.
    Saiz Jabardo, J. M.
    Castro Ruiz, F.
    San Jose Alonso, J. F.
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2014, 46 : 105 - 113
  • [46] R134a and various mixtures of R22/R134a as an alternative to R22 in vapour compression heat pumps
    Karagoz, S
    Yilmaz, M
    Comakli, O
    Ozyurt, O
    ENERGY CONVERSION AND MANAGEMENT, 2004, 45 (02) : 181 - 196
  • [47] CuO-nano based Biodegradable Refrigeration Oil in R134a Refrigeration Systems for Energy Conservation and Green Environment
    Vithya, P.
    Sriram, G.
    Arumugam, S.
    Chaitanya, M. D. V. Aditya
    Deepak, G. Surya
    Kumar, K. Sriram
    Chandra, P. Jayaram
    5TH INTERNATIONAL CONFERENCE ON MATERIALS AND MANUFACTURING ENGINEERING-2020 (ICMME-2020), 2020, 954
  • [49] Experimental Investigation on Ejector Performance Using R134a as Refrigerant
    DAI Zhengshu
    YU Bo
    LIU Pengpeng
    CHEN Guangming
    ZHANG Hua
    JournalofThermalScience, 2019, 28 (04) : 727 - 735
  • [50] Experimental Investigation on Ejector Performance Using R134a as Refrigerant
    Zhengshu Dai
    Bo Yu
    Pengpeng Liu
    Guangming Chen
    Hua Zhang
    Journal of Thermal Science, 2019, 28 : 727 - 735