Adaptive Graph Convolution for Point Cloud Analysis

被引:106
|
作者
Zhou, Haoran [1 ]
Feng, Yidan [2 ]
Fang, Mingsheng [1 ]
Wei, Mingqiang [2 ]
Qin, Jing [3 ]
Lu, Tong [1 ]
机构
[1] Nanjing Univ, Nanjing, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Nanjing, Peoples R China
[3] Hong Kong Polytech Univ, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
SEGMENTATION; NETWORK;
D O I
10.1109/ICCV48922.2021.00492
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolution on 3D point clouds that generalized from 2D grid-like domains is widely researched yet far from perfect. The standard convolution characterises feature correspondences indistinguishably among 3D points, presenting an intrinsic limitation of poor distinctive feature learning. In this paper, we propose Adaptive Graph Convolution (AdaptConv) which generates adaptive kernels for points according to their dynamically learned features. Compared with using a fixed/isotropic kernel, AdaptConv improves the flexibility of point cloud convolutions, effectively and precisely capturing the diverse relations between points from different semantic parts. Unlike popular attentional weight schemes, the proposed AdaptConv implements the adaptiveness inside the convolution operation instead of simply assigning different weights to the neighboring points. Extensive qualitative and quantitative evaluations show that our method outperforms state-of-the-art point cloud classification and segmentation approaches on several benchmark datasets. Our code is available at https://github.com/hrzhou2/AdaptConv-master.
引用
收藏
页码:4945 / 4954
页数:10
相关论文
共 50 条
  • [21] ECG: Edge-aware Point Cloud Completion with Graph Convolution
    Pan, Liang
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (03) : 4392 - 4398
  • [22] Deep Graph Attention Convolution Network for Point Cloud Semantic Segmentation
    Chai Yujing
    Ma Jie
    Liu Hong
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (12)
  • [23] DGPoint: A Dynamic Graph Convolution Network for Point Cloud Semantic Segmentation
    Liu Youqun
    Ao Jianfeng
    Pan Zhongtai
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (16)
  • [24] Low-Level Graph Convolution Network for Point Cloud Processing
    Yan, Hongyu
    Wu, Zhihong
    Lu, Li
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT II, 2022, 13530 : 557 - 569
  • [25] Structure-Aware Graph Convolution Network for Point Cloud Parsing
    Hao, Fengda
    Li, Jiaojiao
    Song, Rui
    Li, Yunsong
    Cao, Kailang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 7025 - 7036
  • [26] Multi-scale sparse convolution and point convolution adaptive fusion point cloud semantic segmentation method
    Bi, Yuxuan
    Liu, Peng
    Zhang, Tianyi
    Shi, Jialin
    Wang, Caixia
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [27] Graph Convolution RPCA With Adaptive Graph
    Zhang, Rui
    Zhang, Wenlin
    Li, Pei
    Li, Xuelong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 6062 - 6071
  • [28] APoX: Accelerate Graph-Based Deep Point Cloud Analysis via Adaptive Graph Construction
    Dai, Lei
    Liang, Shengwen
    Wang, Ying
    Li, Huawei
    Li, Xiaowei
    29TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE, ASP-DAC 2024, 2024, : 231 - 237
  • [29] AGConv: Adaptive Graph Convolution on 3D Point Clouds
    Wei, Mingqiang
    Wei, Zeyong
    Zhou, Haoran
    Hu, Fei
    Si, Huajian
    Chen, Zhilei
    Zhu, Zhe
    Qiu, Jingbo
    Yan, Xuefeng
    Guo, Yanwen
    Wang, Jun
    Qin, Jing
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (08) : 9374 - 9392
  • [30] Point Cloud Classification and Segmentation Model Based on Graph Convolution and 3D Direction Convolution
    Lan, Hong
    Chen, Hao
    Zhang, Pufen
    Computer Engineering and Applications, 2023, 59 (08) : 182 - 191