Similarity Analysis of Spatial-Temporal Mobility Patterns for Travel Mode Prediction Using Twitter Data

被引:6
|
作者
Shou, Zhenyu [1 ]
Cao, Zhenhao [2 ]
Di, Xuan [3 ]
机构
[1] Columbia Univ, Dept Civil Engn & Engn Mech, New York, NY 10027 USA
[2] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai, Peoples R China
[3] Columbia Univ, Dept Civil Engn & Engn, Mech & Data Sci Inst, New York, NY 10027 USA
关键词
D O I
10.1109/itsc45102.2020.9294709
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Leveraging the crawled geotagged and times-tamped tweets of Twitter users, this study develops a methodological framework to predict massively unreported travel mode choices of Twitter users who have left geotagged and timestamped tweets. The prediction framework is based on the similarity between a user without reported mode choice and the users with known travel modes. To appropriately represent a Twitter user's data, we employ a discretized spatial-temporal probabilistic distribution to characterize the user. A novel convolution-based similarity measure is then proposed to effectively capture the interdependencies of both spatially and temporally adjacent data points. A graph inference model is further established to explore the predictability of people's travel mode choice. To validate the prediction framework, we use the Proposition 1 incident in Austin, TX in 2016 as a case study and leverage relevant data crawled from Twitter. The prediction results validate the effectiveness of both the convolution-based similarity measure and the prediction framework. This work demonstrates the feasibility of using social media data to predict people's mobility choices.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Extracting Spatial-Temporal Coherent Patterns in Geomagnetic Secular Variation Using Dynamic Mode Decomposition
    Chi-Duran, Rodrigo
    Buffett, Bruce A.
    GEOPHYSICAL RESEARCH LETTERS, 2023, 50 (05)
  • [42] Bidirectional Spatial-Temporal Network for Traffic Prediction with Multisource Data
    Sun, Tuo
    Yang, Chenwei
    Han, Ke
    Ma, Wanjing
    Zhang, Fan
    TRANSPORTATION RESEARCH RECORD, 2020, 2674 (08) : 78 - 89
  • [43] Analysis of Global Data Archive on Droughts and Floods: Spatial-Temporal Patterns of Damage Distribution
    Istomina, M. N.
    Lebedeva, I. P.
    Dobrovolski, S. G.
    WATER RESOURCES, 2023, 50 (06) : 1018 - 1031
  • [44] Analysis of Global Data Archive on Droughts and Floods: Spatial-Temporal Patterns of Damage Distribution
    M. N. Istomina
    I. P. Lebedeva
    S. G. Dobrovolski
    Water Resources, 2023, 50 : 1018 - 1031
  • [45] Spatial-temporal big data analysis of ship avoidance patterns during typhoon approaches
    Lee, Jeong-Seok
    Kim, Min-Kyeong
    Kim, Bo-Ram
    Kim, Tae-Kyun
    Lee, Chol-Young
    Park, Yong-Gil
    OCEAN ENGINEERING, 2025, 320
  • [46] Spatial-Temporal Analysis of Human Dynamics on Urban Land Use Patterns Using Social Media Data by Gender
    Lei, Chengcheng
    Zhang, An
    Qi, Qingwen
    Su, Huimin
    Wang, Jianghao
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2018, 7 (09)
  • [47] Spatial-temporal traffic data analysis based on global data management using MAS
    Zhang, HS
    Zhang, Y
    Li, ZH
    Hu, DC
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2004, 5 (04) : 267 - 275
  • [48] Fire Detection Using Spatial-temporal Analysis
    Chen, Liang-Hua
    Huang, Wei-Cheng
    WORLD CONGRESS ON ENGINEERING - WCE 2013, VOL III, 2013, : 2222 - 2225
  • [49] Spatial-temporal analysis of mortality using splines
    vanderLinde, A
    Witzko, KH
    Jockel, KH
    BIOMETRICS, 1995, 51 (04) : 1352 - 1360
  • [50] A Distributed Spatial-Temporal Similarity Data Storage Scheme in Wireless Sensor Networks
    Shen, Haiying
    Zhao, Lianyu
    Li, Ze
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2011, 10 (07) : 982 - 996