Vertex-disjoint chorded cycles in a graph

被引:5
|
作者
Qiao, Shengning [1 ]
Zhang, Shenggui [2 ]
机构
[1] Xidian Univ, Dept Appl Math, Xian 710071, Shaanxi, Peoples R China
[2] NW Polytech Univ, Dept Appl Math, Xian 710072, Shaanxi, Peoples R China
关键词
Chord; Vertex disjoint; Minimum degree;
D O I
10.1016/j.orl.2010.09.007
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we prove: Let k >= 1 be an integer and G be graph with at least 4k vertices and minimum degree at least left perpendicular7k/2jright perpendicular. Then G contains k vertex-disjoint cycles such that each of them has at least two chords in G. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:564 / 566
页数:3
相关论文
共 50 条
  • [21] Graphs with many Vertex-Disjoint Cycles
    Rautenbach, Dieter
    Regen, Friedrich
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2012, 14 (02): : 75 - 82
  • [22] Independence number and vertex-disjoint cycles
    Egawa, Yoshimi
    Enomoto, Hikoe
    Jendrol, Stanislav
    Ota, Katsuhiro
    Schiermeyer, Ingo
    DISCRETE MATHEMATICS, 2007, 307 (11-12) : 1493 - 1498
  • [23] A CONJECTURE OF VERSTRAETE ON VERTEX-DISJOINT CYCLES
    Gao, Jun
    Ma, Jie
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (02) : 1290 - 1301
  • [24] Vertex-disjoint cycles of the same length
    Egawa, Y
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1996, 66 (02) : 168 - 200
  • [25] Vertex-disjoint cycles in regular tournaments
    Lichiardopol, Nicolas
    DISCRETE MATHEMATICS, 2012, 312 (12-13) : 1927 - 1930
  • [26] Vertex-disjoint cycles in bipartite tournaments
    Bai, Yandong
    Li, Binlong
    Li, Hao
    DISCRETE MATHEMATICS, 2015, 338 (08) : 1307 - 1309
  • [27] Vertex-disjoint cycles of the same length
    Verstraëte, J
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 88 (01) : 45 - 52
  • [28] Vertex-disjoint cycles in local tournaments
    Li, Ruijuan
    Liang, Juanjuan
    Zhang, Xinhong
    Guo, Yubao
    DISCRETE MATHEMATICS, 2020, 343 (12)
  • [29] ON THE NUMBER OF VERTEX-DISJOINT CYCLES IN DIGRAPHS
    Bai, Yandong
    Manoussakis, Yannis
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (04) : 2444 - 2451
  • [30] Partitioning a graph into vertex-disjoint paths
    Li, J
    Steiner, G
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2005, 42 (03) : 277 - 294