Spectral isolation of naturally reductive metrics on simple Lie groups

被引:6
|
作者
Gordon, Carolyn S. [1 ]
Sutton, Craig J. [1 ]
机构
[1] Dartmouth Coll, Dept Math, Hanover, NH 03755 USA
基金
美国国家科学基金会;
关键词
Laplacian; Eigenvalue spectrum; Naturally reductive metrics; Symmetric spaces; FLAT TORI; MANIFOLDS; RIGIDITY; EIGENVALUE; LAPLACIAN;
D O I
10.1007/s00209-009-0640-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that within the class of left-invariant naturally reductive metrics M(Nat)(G) on a compact simple Lie group G, every metric is spectrally isolated. We also observe that any collection of isospectral compact symmetric spaces is finite; this follows from a somewhat stronger statement involving only a finite part of the spectrum.
引用
收藏
页码:979 / 995
页数:17
相关论文
共 50 条
  • [21] Homogeneous Einstein (α, β)-metrics on compact simple Lie groups and spheres
    Yan, Zaili
    Deng, Shaoqiang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 148 : 147 - 160
  • [22] Naturally Reductive (α1, α2) Metrics
    Tan, Ju
    Xu, Ming
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (04) : 1547 - 1560
  • [23] Local spectral gap in simple Lie groups and applications
    Boutonnet, Remi
    Ioana, Adrian
    Golsefidy, Alireza Salehi
    INVENTIONES MATHEMATICAE, 2017, 208 (03) : 715 - 802
  • [24] NATURALLY REDUCTIVE(α1, α2) METRICS
    谭举
    许明
    Acta Mathematica Scientia, 2023, 43 (04) : 1547 - 1560
  • [25] NATURALLY REDUCTIVE METRICS ON HOMOGENEOUS SYSTEMS
    KIKKAWA, M
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1984, 87 (02): : 203 - 208
  • [26] Naturally Reductive (α1, α2) Metrics
    Ju Tan
    Ming Xu
    Acta Mathematica Scientia, 2023, 43 : 1547 - 1560
  • [27] Local spectral gap in simple Lie groups and applications
    Rémi Boutonnet
    Adrian Ioana
    Alireza Salehi Golsefidy
    Inventiones mathematicae, 2017, 208 : 715 - 802
  • [28] The correspondences of infinitesimal characters for reductive dual pairs in simple Lie groups
    Li, JS
    DUKE MATHEMATICAL JOURNAL, 1999, 97 (02) : 347 - 377
  • [29] NATURALLY REDUCTIVE PSEUDO-RIEMANNIAN 2-STEP NILPOTENT LIE GROUPS
    Ovando, Gabriela P.
    HOUSTON JOURNAL OF MATHEMATICS, 2013, 39 (01): : 147 - 167
  • [30] EINSTEIN METRICS ON COMPACT SIMPLE LIE GROUPS ATTACHED TO STANDARD TRIPLES
    Yan, Zaili
    Deng, Shaoqiang
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (12) : 8587 - 8605