Implementation and Comparison of K-Means and Fuzzy C-Means Algorithms for Agricultural Data

被引:0
|
作者
Shedthi, Shabari B. [1 ]
Shetty, Surendra [2 ]
Siddappa, M. [3 ]
机构
[1] NMAMIT, Dept Comp Sci, Nitte, Karnataka, India
[2] NMAMIT, Dept MCA, Nitte, Karnataka, India
[3] SSIT, Dept Comp Sci, Tumkur, Karnataka, India
来源
PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON INVENTIVE COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICICCT) | 2017年
关键词
K-Means; Fuzzy C-Means; Performance;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering is an unsupervised technique is used for organizing the data for efficient retrieval. This is mainly used in pattern reorganization and data analysis. Today many cluster analysis techniques are used for data analysis and have proven to be very useful in segmentation. Performance of these algorithms is data dependent. In this paper K-Means and Fuzzy C-Means are implemented for segmenting the agricultural diseased data. The proposed research work compares the computing performance and clustering accuracy of K-Means clustering with FCM clustering algorithm. Experimental results showed that higher performance is achieved by K-Means clustering when compared with FCM.
引用
收藏
页码:105 / 108
页数:4
相关论文
共 50 条
  • [21] Analysis of Poor Population in DKI Jakarta Regions using Fuzzy C-Means and K-Means Algorithms
    Sidqi, Syafirina Arsyidin
    Akso, Rafian Tri
    Nurdianto, Imam Bayu
    Novendri, Alia
    Tahyudin, Imam
    Sholikhatin, Siti Alvi
    APICS 2022 - 2022 1st International Conference on Smart Technology, Applied Informatics, and Engineering, Proceedings, 2022, : 27 - 30
  • [22] Evaluation of Segmentation in Magnetic Resonance Images Using k-Means and Fuzzy c-Means Clustering Algorithms
    Finkst, Tomaz
    ELEKTROTEHNISKI VESTNIK-ELECTROCHEMICAL REVIEW, 2012, 79 (03): : 129 - 134
  • [23] Development of slope mass rating system using K-means and fuzzy c-means clustering algorithms
    Jalali Zakaria
    International Journal of Mining Science and Technology, 2016, 26 (06) : 959 - 966
  • [24] Development of slope mass rating system using K-means and fuzzy c-means clustering algorithms
    Zakaria, Jalali
    INTERNATIONAL JOURNAL OF MINING SCIENCE AND TECHNOLOGY, 2016, 26 (06) : 959 - 966
  • [25] Comparing SOM neural network with Fuzzy c-means, K-means and traditional hierarchical clustering algorithms
    Mingoti, Sueli A.
    Lima, Joab O.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2006, 174 (03) : 1742 - 1759
  • [26] EFFICIENT IMPLEMENTATION OF THE FUZZY C-MEANS CLUSTERING ALGORITHMS
    CANNON, RL
    DAVE, JV
    BEZDEK, JC
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1986, 8 (02) : 248 - 255
  • [27] Family of K-Means Clustering for Robust Mean-Variance Portfolio Selection: A Comparison of K-Medoids, K-Means, and Fuzzy C-Means
    Gubu, La
    Cahyono, Edi
    Budiman, Herdi
    Djafar, Muh. Kabil
    INDUSTRIAL ENGINEERING AND MANAGEMENT SYSTEMS, 2024, 23 (03): : 342 - 356
  • [28] K-Means vs. Fuzzy C-Means for Segmentation of Orchid Flowers
    Sabri, Nurbaity
    Ibrahim, Zaidah
    Rosman, Nur Nadiah
    2016 7TH IEEE CONTROL AND SYSTEM GRADUATE RESEARCH COLLOQUIUM (ICSGRC), 2016, : 82 - 86
  • [29] Evaluation of k-Means and fuzzy C-means segmentation on MR images of brain
    Madhukumar, S.
    Santhiyakumari, N.
    EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE, 2015, 46 (02): : 475 - 479
  • [30] Modeling of Vehicle Trajectory using K-Means and Fuzzy C-Means Clustering
    Choong, Mei Yeen
    Angeline, Lorita
    Chin, Renee Ka Yin
    Yeo, Kiam Beng
    Teo, Kenneth Tze Kin
    2018 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN ENGINEERING AND TECHNOLOGY (IICAIET), 2018, : 1 - 6