Dynamic Memory Networks for Visual and Textual Question Answering

被引:0
|
作者
Xiong, Caiming [1 ]
Merity, Stephen [1 ]
Socher, Richard [1 ]
机构
[1] Salesforce Inc, San Francisco, CA 94105 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neural network architectures with memory and attention mechanisms exhibit certain reasoning capabilities required for question answering. One such architecture, the dynamic memory network (DMN), obtained high accuracy on a variety of language tasks. However, it was not shown whether the architecture achieves strong results for question answering when supporting facts are not marked during training or whether it could be applied to other modalities such as images Based on an analysis of the DMN, we propose several improvements to its memory and input modules. Together with these changes we introduce a novel input module for images in order to be able to answer visual questions. Our new DMN+ model improves the state of the art on both the Visual Question Answering dataset and the bAbI-10k text question-answering dataset without supporting fact supervision.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] The Question Answering System of Indonesia's History Using Dynamic Memory Networks (DMN) Model
    Ayuningtyas, Afifah Aprilia
    Kusumaningrum, Retno
    2019 3RD INTERNATIONAL CONFERENCE ON INFORMATICS AND COMPUTATIONAL SCIENCES (ICICOS 2019), 2019,
  • [22] Question Modifiers in Visual Question Answering
    Britton, William
    Sarkhel, Somdeb
    Venugopal, Deepak
    LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 1472 - 1479
  • [23] Graph neural networks for visual question answering: a systematic review
    Abdulganiyu Abdu Yusuf
    Chong Feng
    Xianling Mao
    Ramadhani Ally Duma
    Mohammed Salah Abood
    Abdulrahman Hamman Adama Chukkol
    Multimedia Tools and Applications, 2024, 83 : 55471 - 55508
  • [24] Comprehensive-perception dynamic reasoning for visual question answering
    Shuang, Kai
    Guo, Jinyu
    Wang, Zihan
    PATTERN RECOGNITION, 2022, 131
  • [25] DynGraph: Visual Question Answering via Dynamic Scene Graphs
    Haurilet, Monica
    Al-Halah, Ziad
    Stiefelhagen, Rainer
    PATTERN RECOGNITION, DAGM GCPR 2019, 2019, 11824 : 428 - 441
  • [26] An effective spatial relational reasoning networks for visual question answering
    Shen, Xiang
    Han, Dezhi
    Chen, Chongqing
    Luo, Gaofeng
    Wu, Zhongdai
    PLOS ONE, 2022, 17 (11):
  • [27] Multimodal Graph Networks for Compositional Generalization in Visual Question Answering
    Saqur, Raeid
    Narasimhan, Karthik
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [28] Stacked Self-Attention Networks for Visual Question Answering
    Sun, Qiang
    Fu, Yanwei
    ICMR'19: PROCEEDINGS OF THE 2019 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, 2019, : 207 - 211
  • [29] Graph neural networks for visual question answering: a systematic review
    Yusuf, Abdulganiyu Abdu
    Feng, Chong
    Mao, Xianling
    Ally Duma, Ramadhani
    Abood, Mohammed Salah
    Chukkol, Abdulrahman Hamman Adama
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (18) : 55471 - 55508
  • [30] Multi-level Attention Networks for Visual Question Answering
    Yu, Dongfei
    Fu, Jianlong
    Mei, Tao
    Rui, Yong
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 4187 - 4195