A Weighted Average Consensus Approach for Decentralized Federated Learning

被引:15
|
作者
Giuseppi, Alessandro [1 ]
Manfredi, Sabato [2 ]
Pietrabissa, Antonio [1 ]
机构
[1] Univ Roma La Sapienza, Dept Comp Control & Management Engn, I-00185 Rome, Italy
[2] Univ Naples Federico II, Dept Elect Engn & Informat Technol, I-80125 Naples, Italy
关键词
Federated learning (FedL); deep learning; federated averaging (FedAvg); machine learning (ML); artificial intelligence; discrete-time consensus; distributed systems; CONVERGENCE ANALYSIS; NETWORKS;
D O I
10.1007/s11633-022-1338-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning (FedL) is a machine learning (ML) technique utilized to train deep neural networks (DeepNNs) in a distributed way without the need to share data among the federated training clients. FedL was proposed for edge computing and Internet of things (IoT) tasks in which a centralized server was responsible for coordinating and governing the training process. To remove the design limitation implied by the centralized entity, this work proposes two different solutions to decentralize existing FedL algorithms, enabling the application of FedL on networks with arbitrary communication topologies, and thus extending the domain of application of FedL to more complex scenarios and new tasks. Of the two proposed algorithms, one, called FedLCon, is developed based on results from discrete-time weighted average consensus theory and is able to reconstruct the performances of the standard centralized FedL solutions, as also shown by the reported validation tests.
引用
收藏
页码:319 / 330
页数:12
相关论文
共 50 条
  • [41] Decentralized Federated Learning via MIMO Over-the-Air Computation: Consensus Analysis and Performance Optimization
    Zhai, Zhiyuan
    Yuan, Xiaojun
    Wang, Xin
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (09) : 11847 - 11862
  • [42] Decentralized Directed Collaboration for Personalized Federated Learning
    Liu, Yingqi
    Shi, Yifan
    Li, Qinglun
    Wu, Baoyuan
    Wang, Xueqian
    Shen, Li
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 23168 - 23178
  • [43] Over-the-Air Decentralized Federated Learning
    Shi, Yandong
    Zhou, Yong
    Shi, Yuanming
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 455 - 460
  • [44] FBLearn: Decentralized Platform for Federated Learning on Blockchain
    Djolev, Daniel
    Lazarova, Milena
    Nakov, Ognyan
    ELECTRONICS, 2024, 13 (18)
  • [45] Building Decentralized Image Classifiers with Federated Learning
    Raj, Judy T.
    2020 IEEE REGION 10 SYMPOSIUM (TENSYMP) - TECHNOLOGY FOR IMPACTFUL SUSTAINABLE DEVELOPMENT, 2020, : 489 - 494
  • [46] Graph Federated Learning Based on the Decentralized Framework
    Liu, Peilin
    Tang, Yanni
    Zhang, Mingyue
    Chen, Wu
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT III, 2023, 14256 : 452 - 463
  • [47] DECENTRALIZED FEDERATED LEARNING WITH ENHANCED PRIVACY PRESERVATION
    Tseng, Sheng-Po
    Lin, Jan-Yue
    Cheng, Wei-Chien
    Yeh, Lo-Yao
    Shen, Chih-Ya
    2022 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO WORKSHOPS (IEEE ICMEW 2022), 2022,
  • [48] Blockchain-Based Decentralized Federated Learning
    Dirir, Ahmed
    Salah, Khaled
    Svetinovic, Davor
    Jayaraman, Raja
    Yaqoob, Ibrar
    Kanhere, Salil S.
    2022 FOURTH INTERNATIONAL CONFERENCE ON BLOCKCHAIN COMPUTING AND APPLICATIONS (BCCA), 2022, : 99 - 106
  • [49] FedDKD: Federated learning with decentralized knowledge distillation
    Li, Xinjia
    Chen, Boyu
    Lu, Wenlian
    APPLIED INTELLIGENCE, 2023, 53 (15) : 18547 - 18563
  • [50] A decentralized data evaluation framework in federated learning
    Bhatia, Laveen
    Samet, Saeed
    BLOCKCHAIN-RESEARCH AND APPLICATIONS, 2023, 4 (04):