Mechanical properties prediction in rebar using kernel-based regression models

被引:2
|
作者
Murta, Raphaella H. F. [1 ]
de Moura, Elineudo P. [1 ]
Barreto, Guilherme A. [2 ]
机构
[1] Univ Fed Ceara, Dept Met & Mat Engn, Bloco 729, BR-60440554 Fortaleza, Ceara, Brazil
[2] Univ Fed Ceara, Dept Teleinformat Engn, Fortaleza, Ceara, Brazil
关键词
rebar; yield sthength; ultimate tensile strength; UTS; YS ration; percent elongation; minimal learning machine; support vector regression; least-squares support vector regression; STEEL; MACHINE;
D O I
10.1080/03019233.2022.2075691
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
A successful application of neural networks to the prediction of four important mechanical properties of steel rebar used in civil construction has been reported recently. In the current work, we advanced further in this issue by evaluating the performances of three kernel-based regression models, namely, the minimal learning machine (MLM), the support vector regression (SVR), and the least-squares SVR (LSSVR) in the estimation of the yield strength (YS), ultimate tensile strength (UTS), UTS/YS ratio, and percent elongation (PE) from chemical composition and parameters used during hot rolling and heat treatment. The achieved results indicate that the LSSVR model consistently outperforms the SVR and MLM models for all four properties studied.
引用
收藏
页码:1011 / 1020
页数:10
相关论文
共 50 条
  • [21] Kernel-Based Models for System Analysis
    van Waarde, Henk J.
    Sepulchre, Rodolphe
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (09) : 5317 - 5332
  • [22] Kernel-based mixture models for classification
    Alejandro Murua
    Nicolas Wicker
    Computational Statistics, 2015, 30 : 317 - 344
  • [23] Kernel-based mixture models for classification
    Murua, Alejandro
    Wicker, Nicolas
    COMPUTATIONAL STATISTICS, 2015, 30 (02) : 317 - 344
  • [24] Kernel-Based Machine Learning Models for the Prediction of Dengue and Chikungunya Morbidity in Colombia
    Caicedo-Torres, William
    Montes-Grajales, Diana
    Miranda-Castro, Wendy
    Fennix-Agudelo, Mary
    Agudelo-Herrera, Nicolas
    ADVANCES IN COMPUTING, CCC 2017, 2017, 735 : 472 - 484
  • [25] Robust and optimal epsilon-insensitive Kernel-based regression for general noise models
    Karal, Omer
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 120
  • [26] Convergence rate of SVM for kernel-based robust regression
    Wang, Shuhua
    Chen, Zhenlong
    Sheng, Baohuai
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2019, 17 (01)
  • [27] Spectral imaging using consumer-level devices and kernel-based regression
    Heikkinen, Ville
    Camara, Clara
    Hirvonen, Tapani
    Penttinen, Niko
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2016, 33 (06) : 1095 - 1110
  • [28] Quantity Distribution Search using Sparse Representation Generated with Kernel-based Regression
    Asahara, Akinori
    Hayashi, Hideki
    GISTAM: PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON GEOGRAPHICAL INFORMATION SYSTEMS THEORY, APPLICATIONS AND MANAGEMENT, 2017, : 209 - 216
  • [29] Robust kernel-based regression with bounded influence for outliers
    Hwang, Sangheum
    Kim, Dohyun
    Jeong, Myong K.
    Yum, Bong-Jin
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2015, 66 (08) : 1385 - 1398
  • [30] Reproducing kernel-based functional linear expectile regression
    Liu, Meichen
    Pietrosanu, Matthew
    Liu, Peng
    Jiang, Bei
    Zhou, Xingcai
    Kong, Linglong
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (01): : 241 - 266