Fine-tuning the etch depth profile via dynamic shielding of ion beam

被引:1
|
作者
Wu, Lixiang [1 ]
Qiu, Keqiang [1 ]
Fu, Shaojun [1 ]
机构
[1] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Peoples R China
来源
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS | 2016年 / 381卷
基金
中国国家自然科学基金;
关键词
Ion beam etching; Shielding rate; Etch depth; Parametric modeling; GRATINGS;
D O I
10.1016/j.nimb.2016.05.021
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We introduce a method for finely adjusting the etch depth profile by dynamic shielding in the course of ion beam etching (IBE), which is crucial for the ultra-precision fabrication of large optics. We study the physical process of dynamic shielding and propose a parametric modeling method to quantitatively analyze the shielding effect on etch depths, or rather the shielding rate, where a piecewise Gaussian model is adopted to fit the shielding rate profile. Two experiments were conducted. The experimental result of parametric modeling of shielding rate profiles shows that the shielding rate profile is significantly influenced by the rotary angle of the leaf. The result of the experiment on fine-tuning the etch depth profile shows good agreement with the simulated result, which preliminarily verifies the feasibility of our method. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:72 / 75
页数:4
相关论文
共 50 条
  • [21] Advancing Parameter Efficiency in Fine-tuning via Representation Editing
    Wu, Muling
    Liu, Wenhao
    Wang, Xiaohua
    Li, Tianlong
    Lv, Changze
    Ling, Zixuan
    Zhu, Jianhao
    Zhang, Cenyuan
    Zheng, Xiaoqing
    Huang, Xuanjing
    PROCEEDINGS OF THE 62ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1: LONG PAPERS, 2024, : 13445 - 13464
  • [22] Boosting fine-tuning via Conditional Online Knowledge Transfer
    Liu, Zhiqiang
    Li, Yuhong
    Huang, Chengkai
    Luo, KunTing
    Liu, Yanxia
    NEURAL NETWORKS, 2024, 169 : 325 - 333
  • [23] Hand Segmentation with Skin Color Fine-Tuning Using Kinect Depth Sensor
    Shih, Huang-chia
    Ma, Chang-Hsian
    2017 IEEE 6TH GLOBAL CONFERENCE ON CONSUMER ELECTRONICS (GCCE), 2017,
  • [24] DeepHash for Image Instance Retrieval: Getting Regularization, Depth and Fine-Tuning Right
    Lin, Jie
    Morere, Olivier
    Veillard, Antoine
    Duan, Ling-Yu
    Goh, Hanlin
    Chandrasekhar, Vijay
    PROCEEDINGS OF THE 2017 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL (ICMR'17), 2017, : 138 - 146
  • [25] Performance Profile of Transformer Fine-Tuning in Multi-GPU Cloud Environments
    Begoli, Edmon
    Lim, Seung-Hwan
    Srinivasan, Sudarshan
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 3095 - 3100
  • [26] Fine-tuning anti-tumor immunotherapies via stochastic simulations
    Giulio Caravagna
    Roberto Barbuti
    Alberto d'Onofrio
    BMC Bioinformatics, 13
  • [27] SFTC: Machine Unlearning via Selective Fine-tuning and Targeted Confusion
    Perifanis, Vasileios
    Karypidis, Efstathios
    Komodakis, Nikos
    Efraimidis, Pavlos S.
    PROCEEDINGS OF THE 2024 EUROPEAN INTERDISCIPLINARY CYBERSECURITY CONFERENCE, EICC 2024, 2024, : 29 - 36
  • [28] Fine-Tuning Genetic Circuits via Host Context and RBS Modulation
    Chan, Dennis Tin Chat
    Winter, Lena
    Bjerg, Johan
    Krsmanovic, Stina
    Baldwin, Geoff S.
    Bernstein, Hans C.
    ACS SYNTHETIC BIOLOGY, 2025, 14 (01): : 193 - 205
  • [29] Fine-tuning the diradical character of molecular systems via the heteroatom effect
    Wang, Wenxiang
    Ge, Lingbing
    Xue, Guodong
    Miao, Fang
    Chen, Pingan
    Chen, Hanjiao
    Lin, Yiwei
    Ni, Yong
    Xiong, Jingyuan
    Hu, Yuanyuan
    Wu, Jishan
    Zheng, Yonghao
    CHEMICAL COMMUNICATIONS, 2020, 56 (09) : 1405 - 1408
  • [30] A Generative Approach for Script Event Prediction via Contrastive Fine-Tuning
    Zhu, Fangqi
    Gao, Jun
    Yu, Changlong
    Wang, Wei
    Xu, Chen
    Mu, Xin
    Yang, Min
    Xu, Ruifeng
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 11, 2023, : 14056 - 14064