The optimal group size using inverse binomial group testing considering misclassification

被引:2
|
作者
Xiong, Wenjun [1 ]
机构
[1] Guangxi Normal Univ, Sch Math & Stat, 15 Yucai Rd, Guilin 541004, Guangxi, Peoples R China
关键词
Group size; Group testing; Inverse sampling; Measurement error; Negative binomial distribution; 62P10; INFECTION-RATES; DISEASE TRANSMISSION; PROPORTIONS; PREVALENCE; VECTORS; HIV;
D O I
10.1080/03610926.2014.923461
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Inverse binomial sampling is preferred for quick report. It is also recommended when the population proportion is really small to ensure a positive sample is contained. Group testing has been discussed extensively under binomial model, but not so much under negative binomial model. In this study, we investigate the problem of how to determine the group size using inverse binomial group testing. We propose to choose the optimal group size by minimizing asymptotic variance of the estimator or the cost relative to Fisher information. We show the good performance of our estimator by applying to the data of Chlamydia.
引用
收藏
页码:4600 / 4610
页数:11
相关论文
共 50 条
  • [31] Optimal Multi-broadcast with Beeps Using Group Testing
    Beauquier, Joffroy
    Burman, Janna
    Davies, Peter
    Dufoulon, Fabien
    STRUCTURAL INFORMATION AND COMMUNICATION COMPLEXITY, SIROCCO 2019, 2019, 11639 : 66 - 80
  • [32] Nearly optimal truncated group sequential test on binomial proportions
    Hu, Sigui
    Wang, Honglei
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (08) : 2332 - 2342
  • [33] Secure Group Communication Using Binomial Trees
    Aparna, R.
    Amberker, B. B.
    Pola, Divya
    Bathia, Pranjal
    2009 IEEE 3RD INTERNATIONAL SYMPOSIUM ON ADVANCED NETWORKS AND TELECOMMUNICATION SYSTEMS (ANTS 2009), 2009, : 142 - +
  • [34] Optimal group size with joint liability group lending strategy
    Mukherjee, Shirsendu
    Bhattacharya, Sukanta
    INDIAN GROWTH AND DEVELOPMENT REVIEW, 2015, 8 (01) : 2 - 18
  • [35] An improvement over the information lower bound in binomial group testing
    Yao, Y.C.
    Probability in the Engineering and Informational Sciences, 1988, 2 (03) : 313 - 320
  • [36] Reader Reaction: A Note on the Evaluation of Group Testing Algorithms in the Presence of Misclassification
    Malinovsky, Yaakov
    Albert, Paul S.
    Roy, Anindya
    BIOMETRICS, 2016, 72 (01) : 299 - 302
  • [37] DORFMAN-TYPE GROUP TESTING FOR A MODIFIED BINOMIAL MODEL
    PFEIFER, CG
    ENIS, P
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1978, 73 (363) : 588 - 592
  • [38] GROUP TESTING TO ELIMINATE EFFICIENTLY ALL DEFECTIVES IN A BINOMIAL SAMPLE
    SOBEL, M
    GROLL, PA
    BELL SYSTEM TECHNICAL JOURNAL, 1959, 38 (05): : 1179 - 1252
  • [39] Optimal group testing with heterogeneous risks
    Bobkova, Nina
    Chen, Ying
    Eraslan, Hulya
    ECONOMIC THEORY, 2024, 77 (1-2) : 413 - 444
  • [40] Optimal group testing with heterogeneous risks
    Nina Bobkova
    Ying Chen
    Hülya Eraslan
    Economic Theory, 2024, 77 : 413 - 444