Wave scattering in 1-D nonconservative media

被引:0
|
作者
Aktosun, T [1 ]
Klaus, M [1 ]
van der Mee, C [1 ]
机构
[1] N Dakota State Univ, Dept Math, Fargo, ND 58105 USA
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this review paper, the generalized Schrodinger equation d(2) psi/dx(2) + k(2) psi = [ikP(x)+ Q(x)]psi is considered, where P(x) and Q(x) are real, integrable potentials with finite first moments. The scattering solutions and the bound state solutions are studied, the scattering coefficients and their small-k and large-k asymptotics are analyzed. Unless P(x) less than or equal to 0, it is shown that there may be bound states at complex energies, degenerate bound states, and singularities of the transmission coefficient for real k. Some illustrative examples are provided.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [31] ON THE CHORD LENGTH SAMPLING IN 1-D BINARY STOCHASTIC MEDIA
    Liang, Chao
    Ji, Wei
    TRANSPORT THEORY AND STATISTICAL PHYSICS, 2011, 40 (05): : 282 - 303
  • [32] Optimization of quasi-normal eigenvalues for 1-D wave equations in inhomogeneous media; description of optimal structures
    Karabash, Illya M.
    ASYMPTOTIC ANALYSIS, 2013, 81 (3-4) : 273 - 295
  • [33] A homotopy method for the impedance inversion of 1-D wave equation
    Zhang, LQ
    Wang, JY
    Yan, DT
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2004, 47 (06): : 1111 - 1117
  • [34] A 2-grid algorithm for the 1-d wave equation
    Negreanu, M
    Zuazua, E
    MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, WAVES 2003, 2003, : 213 - 217
  • [35] Dispersion for 1-D Schrodinger and wave equations with BV coefficients
    Beli, Constantin N.
    Ignat, Liviu I.
    Zuazua, Enrique
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (06): : 1473 - 1495
  • [36] Convergence of a multigrid method for the controllability of a 1-d wave equation
    Negreanu, M
    Zuazua, E
    COMPTES RENDUS MATHEMATIQUE, 2004, 338 (05) : 413 - 418
  • [37] CONVERGENCE OF AN INVERSE PROBLEM FOR A 1-D DISCRETE WAVE EQUATION
    Baudouin, Lucie
    Ervedoza, Sylvain
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (01) : 556 - 598
  • [38] Exact boundary controllability for 1-D quasilinear wave equations
    Li, TS
    Yu, LX
    COMPTES RENDUS MATHEMATIQUE, 2003, 337 (04) : 271 - 276
  • [39] Exponential stabilization of 1-d wave equation with input delay
    Wang, Han
    Xu, Gen Qi
    WSEAS Transactions on Mathematics, 2013, 12 (10) : 1001 - 1013
  • [40] Wave propagation in a 1-D partially saturated poroelastic column
    Li, P.
    Schanz, M.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2011, 184 (03) : 1341 - 1353