Wave scattering in 1-D nonconservative media

被引:0
|
作者
Aktosun, T [1 ]
Klaus, M [1 ]
van der Mee, C [1 ]
机构
[1] N Dakota State Univ, Dept Math, Fargo, ND 58105 USA
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this review paper, the generalized Schrodinger equation d(2) psi/dx(2) + k(2) psi = [ikP(x)+ Q(x)]psi is considered, where P(x) and Q(x) are real, integrable potentials with finite first moments. The scattering solutions and the bound state solutions are studied, the scattering coefficients and their small-k and large-k asymptotics are analyzed. Unless P(x) less than or equal to 0, it is shown that there may be bound states at complex energies, degenerate bound states, and singularities of the transmission coefficient for real k. Some illustrative examples are provided.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [1] INVERSE SCATTERING IN 1-D NONHOMOGENEOUS MEDIA AND RECOVERY OF THE WAVE SPEED
    AKTOSUN, T
    KLAUS, M
    VANDERMEE, C
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (04) : 1395 - 1402
  • [2] STABLE INVERSE SCATTERING ALGORITHMS FOR 1-D MEDIA
    WIDYA, I
    GEOPHYSICS, 1985, 50 (02) : 333 - 333
  • [3] Scattering and Radiation from/by 1-D Periodic Metallizations Residing in Layered Media
    Vande Ginste, Dries
    Rogier, Hendrik
    De Zutter, Daniel
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2010, 58 (10) : 3316 - 3326
  • [4] Numerical analysis of 1-D compression wave propagation in saturated poroelastic media
    Qiu, Tong
    Fox, Patrick J.
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2008, 32 (02) : 161 - 187
  • [5] Inverse Scattering for the 1-D Helmholtz Equation
    Beltita, Ingrid
    Bunoiu, Renata
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2016, 10 (04) : 639 - 666
  • [6] Inverse Scattering for the 1-D Helmholtz Equation
    Ingrid Beltiţă
    Renata Bunoiu
    Complex Analysis and Operator Theory, 2016, 10 : 639 - 666
  • [7] Inverse scattering in one-dimensional nonconservative media
    Aktosun, T
    Klaus, M
    van der Mee, C
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1998, 30 (03) : 279 - 316
  • [8] A remark on the stabilization of the 1-d wave equation
    Nicaise, Serge
    Valein, Julie
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (1-2) : 47 - 51
  • [9] Insensitizing controls for the 1-D wave equation
    Dager, Rene
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2006, 45 (05) : 1758 - 1768
  • [10] Spectra of a 1-D Wave Equation on Networks
    Liu Dongyi
    Xu Genqi
    2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 1037 - 1042