Bose-Einstein condensation at finite momentum and magnon condensation in thin film ferromagnets

被引:17
|
作者
Hick, J. [1 ]
Kreisel, A. [1 ]
Kopietz, P. [1 ]
机构
[1] Goethe Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany
来源
EUROPEAN PHYSICAL JOURNAL B | 2010年 / 78卷 / 04期
关键词
EXCHANGE BOUNDARY-CONDITIONS; SPIN-WAVE INSTABILITIES; PARAMETRIC-EXCITATION; NUCLEATION; SPECTRUM; SYSTEM; STATE; FIELD;
D O I
10.1140/epjb/e2010-10596-7
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We use the Gross-Pitaevskii equation to determine the spatial structure of the condensate density of interacting bosons whose energy dispersion epsilon(k) has two degenerate minima at finite wave-vectors +/-q. We show that in general the Fourier transform of the condensate density has finite amplitudes for all integer multiples of q. If the interaction is such that many Fourier components contribute, the Bose condensate is localized at the sites of a one-dimensional lattice with spacing 2 pi/vertical bar q vertical bar; in this case Bose-Einstein condensation resembles the transition from a liquid to a crystalline solid. We use our results to investigate the spatial structure of the Bose condensate formed by magnons in thin films of ferromagnets with dipole-dipole interactions.
引用
收藏
页码:429 / 437
页数:9
相关论文
共 50 条
  • [41] Nonequilibrium Bose-Einstein condensation
    Shukla, Vishwanath
    Nazarenko, Sergey
    PHYSICAL REVIEW A, 2022, 105 (03)
  • [42] SPATIAL BOSE-EINSTEIN CONDENSATION
    MASUT, R
    MULLIN, WJ
    AMERICAN JOURNAL OF PHYSICS, 1979, 47 (06) : 493 - 497
  • [43] Bose-Einstein condensation of molecules
    Jochim, S
    Bartenstein, M
    Altmeyer, A
    Hendl, G
    Riedl, S
    Chin, C
    Denschlag, JH
    Grimm, R
    SCIENCE, 2003, 302 (5653) : 2101 - 2103
  • [44] Continuous Bose-Einstein condensation
    Chen, Chun-Chia
    Escudero, Rodrigo Gonzalez
    Minar, Jiri
    Pasquiou, Benjamin
    Bennetts, Shayne
    Schreck, Florian
    NATURE, 2022, 606 (7915) : 683 - +
  • [45] The Bose-Einstein condensation of anyons
    Liu, Y
    AUSTRALIAN JOURNAL OF PHYSICS, 2000, 53 (03): : 447 - 452
  • [46] Bose-Einstein Condensation in Microgravity
    van Zoest, T.
    Gaaloul, N.
    Singh, Y.
    Ahlers, H.
    Herr, W.
    Seidel, S. T.
    Ertmer, W.
    Rasel, E.
    Eckart, M.
    Kajari, E.
    Arnold, S.
    Nandi, G.
    Schleich, W. P.
    Walser, R.
    Vogel, A.
    Sengstock, K.
    Bongs, K.
    Lewoczko-Adamczyk, W.
    Schiemangk, M.
    Schuldt, T.
    Peters, A.
    Koenemann, T.
    Muentinga, H.
    Laemmerzahl, C.
    Dittus, H.
    Steinmetz, T.
    Haensch, T. W.
    Reichel, J.
    SCIENCE, 2010, 328 (5985) : 1540 - 1543
  • [47] Bose-Einstein Condensation of Lithium
    Sackett, C. A.
    Bradley, C. C.
    Welling, M.
    Hulet, R. G.
    BRAZILIAN JOURNAL OF PHYSICS, 1997, 27 (02) : 154 - 161
  • [48] ON THE DYNAMICS OF BOSE-EINSTEIN CONDENSATION
    BUFFET, E
    DESMEDT, P
    PULE, JV
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1984, 1 (06): : 413 - 451
  • [49] Stimulated thermalization of a parametrically driven magnon gas as a prerequisite for Bose-Einstein magnon condensation
    Clausen, P.
    Bozhko, D. A.
    Vasyuchka, V. I.
    Hillebrands, B.
    Melkov, G. A.
    Serga, A. A.
    PHYSICAL REVIEW B, 2015, 91 (22)
  • [50] Generalized Bose-Einstein Condensation
    Mullin, William J.
    Sakhel, Asaad R.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2012, 166 (3-4) : 125 - 150