The parametrix method approach to diffusions in a turbulent Gaussian environment

被引:5
|
作者
Komorowski, T [1 ]
机构
[1] Michigan State Univ, E Lansing, MI 48824 USA
关键词
random Guassian field; mixing condition; weak convergence of stochastic processes;
D O I
10.1016/S0304-4149(97)00122-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we deal with the solutions of Ito stochastic differential equation dX(epsilon)(t) = 1/epsilon V (t/epsilon(2), X-epsilon(t)/epsilon(alpha)) dt + root 2 dB(t), for a small parameter epsilon. We prove that for 0 less than or equal to alpha < 1 and V a divergence-free, Gaussian random field, sufficiently strongly mixing in t variable the family of processes {X-epsilon(t)}(t greater than or equal to 0), epsilon > 0 converges weakly to a Brownian motion. The entries of the covariance matrix of the limiting Brownian motion are given by a(i,j) = 2 delta(i,j) + integral(-infinity)(+infinity) R-i,R-j(t, 0) dt, i, i = 1,..., d, where [R-i,R-j(t,x)] is the covariance matrix of the field V. To obtain this result we apply a version of the parametrix method for a linear parabolic PDE (see Friedman, 1963). (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:165 / 193
页数:29
相关论文
共 50 条
  • [21] Large Deviations for Gaussian Diffusions with Delay
    Azencott, Robert
    Geiger, Brett
    Ott, William
    JOURNAL OF STATISTICAL PHYSICS, 2018, 170 (02) : 254 - 285
  • [22] A PARAMETRIX METHOD FOR ELLIPTIC SURFACE PDES
    Goodwill, Tristan
    O'neil, Michael
    PURE AND APPLIED ANALYSIS, 2025, 7 (01):
  • [23] On ballistic diffusions in random environment
    Shen, L
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2003, 39 (05): : 839 - 876
  • [24] Characterization of multivariate stationary Gaussian reciprocal diffusions
    Levy, BC
    JOURNAL OF MULTIVARIATE ANALYSIS, 1997, 62 (01) : 74 - 99
  • [25] Evolution of Gaussian Concentration Bounds under Diffusions
    Chazottes, J-R
    Collet, P.
    Redig, F.
    MARKOV PROCESSES AND RELATED FIELDS, 2021, 27 (05) : 707 - 754
  • [26] Branching Diffusions in Random Environment
    Boeinghoff, C.
    Hutzenthaler, M.
    MARKOV PROCESSES AND RELATED FIELDS, 2012, 18 (02) : 269 - 310
  • [27] Efficient prediction of airborne noise propagation in a non-turbulent urban environment using Gaussian beam tracing method
    Yunus, Furkat
    Casalino, Damiano
    Avallone, Francesco
    Ragni, Daniele
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2023, 153 (04): : 2362 - 2375
  • [28] On the sector condition and homogenization of diffusions with a Gaussian drift
    Komorowski, T
    Stefano, O
    JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 197 (01) : 179 - 211
  • [29] Taylor's Law from Gaussian diffusions
    Eliazar, Iddo
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2025, 58 (01)
  • [30] A parametrix approach for some degenerate stable driven SDEs
    Huang, Lorick
    Menozzi, Stephane
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (04): : 1925 - 1975