The parametrix method approach to diffusions in a turbulent Gaussian environment

被引:5
|
作者
Komorowski, T [1 ]
机构
[1] Michigan State Univ, E Lansing, MI 48824 USA
关键词
random Guassian field; mixing condition; weak convergence of stochastic processes;
D O I
10.1016/S0304-4149(97)00122-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we deal with the solutions of Ito stochastic differential equation dX(epsilon)(t) = 1/epsilon V (t/epsilon(2), X-epsilon(t)/epsilon(alpha)) dt + root 2 dB(t), for a small parameter epsilon. We prove that for 0 less than or equal to alpha < 1 and V a divergence-free, Gaussian random field, sufficiently strongly mixing in t variable the family of processes {X-epsilon(t)}(t greater than or equal to 0), epsilon > 0 converges weakly to a Brownian motion. The entries of the covariance matrix of the limiting Brownian motion are given by a(i,j) = 2 delta(i,j) + integral(-infinity)(+infinity) R-i,R-j(t, 0) dt, i, i = 1,..., d, where [R-i,R-j(t,x)] is the covariance matrix of the field V. To obtain this result we apply a version of the parametrix method for a linear parabolic PDE (see Friedman, 1963). (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:165 / 193
页数:29
相关论文
共 50 条
  • [1] The Parametrix Method for Skew Diffusions
    Arturo Kohatsu-Higa
    Dai Taguchi
    Jie Zhong
    Potential Analysis, 2016, 45 : 299 - 329
  • [2] The Parametrix Method for Skew Diffusions
    Kohatsu-Higa, Arturo
    Taguchi, Dai
    Zhong, Jie
    POTENTIAL ANALYSIS, 2016, 45 (02) : 299 - 329
  • [3] The parametrix method
    Haupt, O
    MATHEMATISCHE ANNALEN, 1923, 88 : 136 - 150
  • [4] GAUSSIAN DIFFUSIONS
    CHALEYATMAUREL, M
    ELIE, L
    ASTERISQUE, 1981, (84-8) : 255 - 279
  • [5] Gaussian diffusions
    不详
    SEMICLASSICAL ANALYSIS FOR DIFFUSIONS AND STOCHASTIC PROCESSES, 2000, 1724 : 17 - 39
  • [6] Space-time fractional diffusions in Gaussian noisy environment
    Chen, Le
    Hu, Guannan
    Hu, Yaozhong
    Huang, Jingyu
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC REPORTS, 2017, 89 (01): : 171 - 206
  • [7] Contrastive divergence in Gaussian diffusions
    Movellan, Javier R.
    NEURAL COMPUTATION, 2008, 20 (09) : 2238 - 2252
  • [8] A Stochastic Interpretation of the Parametrix Method
    Kohatsu-Higa, A.
    UKRAINIAN MATHEMATICAL JOURNAL, 2024, 75 (11) : 1673 - 1692
  • [9] A parametrix method in integral geometry
    V. P. Palamodov
    Journal d'Analyse Mathématique, 2015, 125 : 353 - 370
  • [10] Symplectic structure for Gaussian diffusions
    Brandao, A
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (09) : 4257 - 4283