Divergences in quantum electrodynamics on a graph

被引:8
|
作者
Kan, N [1 ]
Shiraishi, K
机构
[1] Yamaguchi Univ, Grad Sch Sci & Engn, Yamaguchi 7538512, Japan
[2] Yamaguchi Univ, Fac Sci, Yamaguchi 7538512, Japan
关键词
D O I
10.1063/1.2109687
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a model of quantum electrodynamics (QED) on a graph as the generalization of dimensional deconstruction with the Abelian symmetry. Arbitrary structures of the theory space correspond to the graphs consisting of vertices and edges. The mass spectrum of the model is expressed in terms of eigenvalues of the Laplacian for the graph. We also find that physical massless scalar modes are associated with the fundamental tie set matrix on the graph. We further investigate the one-loop divergences in the model by use of the background field method. (c) 2005 American Institute of Physics.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] A PATH TO QUANTUM ELECTRODYNAMICS
    SCHWINGER, J
    PHYSICS TODAY, 1989, 42 (02) : 42 - 48
  • [42] Nonequilibrium quantum electrodynamics
    Anastopoulos, C
    Zoupas, A
    PHYSICAL REVIEW D, 1998, 58 (10)
  • [43] Quadronium and quantum electrodynamics
    Griffin, JJ
    CANADIAN JOURNAL OF PHYSICS, 1996, 74 (7-8) : 527 - 533
  • [44] To quantum electrodynamics.
    Jordan, P.
    ZEITSCHRIFT FUR PHYSIK, 1935, 95 (3-4): : 202 - 209
  • [45] Subcycle quantum electrodynamics
    C. Riek
    P. Sulzer
    M. Seeger
    A. S. Moskalenko
    G. Burkard
    D. V. Seletskiy
    A. Leitenstorfer
    Nature, 2017, 541 : 376 - 379
  • [46] AGREEMENT WITH QUANTUM ELECTRODYNAMICS
    不详
    NATURE-PHYSICAL SCIENCE, 1972, 238 (81): : 33 - &
  • [47] CAVITY QUANTUM ELECTRODYNAMICS
    HAROCHE, S
    RAIMOND, JM
    SCIENTIFIC AMERICAN, 1993, 268 (04) : 54 - &
  • [48] MACROSCOPIC QUANTUM ELECTRODYNAMICS
    FULTON, RL
    JOURNAL OF CHEMICAL PHYSICS, 1969, 50 (08): : 3355 - &
  • [49] URBAN - QUANTUM ELECTRODYNAMICS
    LINKE, V
    ATOMPRAXIS, 1967, 13 (08): : 380 - &
  • [50] On quantum electrodynamics II
    Ginzburg, VL
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1939, 23 : 899 - 903