Uncertainty in Clinical Endpoints: Information and Retrieval

被引:0
|
作者
Wang, Hongwei [1 ]
Chen, Cong [2 ]
Snapinn, Steven M. [3 ]
机构
[1] Merck Res Labs, Rahway, NJ 07065 USA
[2] Merck Res Labs, N Wales, PA 19454 USA
[3] Amgen Inc, Global Biostat & Epidemiol, Thousand Oaks, CA 91320 USA
来源
关键词
Cardiovascular; Endpoint adjudication; Oncology; Poisson process; Weighted Cox regression;
D O I
10.1198/sbr.2009.0043
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Clinical endpoints such as stroke in cardiovascular trials or disease progression in oncology trials are often assessed with uncertainty. The conventional approach is to classify each potential endpoint as true or false by an endpoint adjudication committee via a voting procedure, and only include the first confirmed endpoint with a majority of votes for each patient in Cox regression analysis. To retrieve this uncertainty information, Snapinn (1998) proposed a weighted Cox regression model and showed substantial gain in power over the conventional approach. In this research note, we try to complement this work by (1) demonstrating the impact of adjudication on the conventional approach; and (2) providing a theoretical explanation for why the weighted method works better.
引用
收藏
页码:362 / 365
页数:4
相关论文
共 50 条
  • [31] Relationship among activities and problems causing uncertainty in information seeking and retrieval
    Chowdhury, Sudatta
    Gibb, Forbes
    JOURNAL OF DOCUMENTATION, 2009, 65 (03) : 470 - 499
  • [32] Intelligent Clinical Notes System: An Information Retrieval and Information Extraction System for Clinical Notes
    Patrick, Jon
    Li, Min
    2009 11TH INTERNATIONAL CONFERENCE ON E-HEALTH NETWORKING, APPLICATIONS AND SERVICES (HEALTHCOM 2009), 2009, : 108 - 115
  • [33] Endpoints in clinical studies:: Surrogate parameters or hard clinical endpoints?
    Böger, RH
    INTERNIST, 2002, 43 (04): : 493 - 497
  • [34] Locating information with uncertainty in fully interconnected networks with applications to World Wide Web information retrieval
    Kaporis, Alexis C.
    Kirousis, Lefteris M.
    Kranakis, Evangelos
    Krizanc, Danny
    Stamatiou, Yannis C.
    Stavropoulos, Elias C.
    1600, Oxford University Press (44):
  • [35] Locating information with uncertainty in fully interconnected networks with applications to World Wide Web information retrieval
    Kaporis, AC
    Kirousis, LM
    Kranakis, E
    Krizanc, D
    Stamatiou, YC
    Stavropoulos, EC
    COMPUTER JOURNAL, 2001, 44 (04): : 221 - 229
  • [36] Care episode retrieval: distributional semantic models for information retrieval in the clinical domain
    Hans Moen
    Filip Ginter
    Erwin Marsi
    Laura-Maria Peltonen
    Tapio Salakoski
    Sanna Salanterä
    BMC Medical Informatics and Decision Making, 15
  • [37] Care episode retrieval: distributional semantic models for information retrieval in the clinical domain
    Moen, Hans
    Ginter, Filip
    Marsi, Erwin
    Peltonen, Laura-Maria
    Salakoski, Tapio
    Salantera, Sanna
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2015, 15
  • [38] Clinical trials: Surrogate endpoints or hard endpoints?
    Kuller, LH
    AMERICAN JOURNAL OF CARDIOLOGY, 2001, 88 (2A): : 59E - 61E
  • [39] CLINICAL INDUSTRIAL TOXICOLOGY - AN APPROACH TO INFORMATION-RETRIEVAL
    BRESNITZ, EA
    REST, KM
    MILLER, N
    ANNALS OF INTERNAL MEDICINE, 1985, 103 (06) : 967 - 972
  • [40] Roogle: An Information Retrieval Engine for Clinical Data Warehouse
    Cuggia, Marc
    Garcelon, Nicolas
    Campillo-Gimenez, Boris
    Bernicot, Thomas
    Laurent, Jean-Francois
    Garin, Etienne
    Happe, Andre
    Duvauferrier, Regis
    USER CENTRED NETWORKED HEALTH CARE, 2011, 169 : 584 - 588