Heights of hypersurfaces in toric varieties

被引:3
|
作者
Gualdi, Roberto [1 ]
机构
[1] Univ Bordeaux, Inst Math Bordeaux, Talence, France
关键词
toric variety; height of a variety; Ronkin function; Legendre-Fenchel duality; mixed integral; MAHLER MEASURES; AMEBAS;
D O I
10.2140/ant.2018.12.2403
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a cycle of codimension 1 in a toric variety, its degree with respect to a nef toric divisor can be understood in terms of the mixed volume of the polytopes associated to the divisor and to the cycle. We prove here that an analogous combinatorial formula holds in the arithmetic setting: the global height of a 1-codimensional cycle with respect to a toric divisor equipped with a semipositive toric metric can be expressed in terms of mixed integrals of the v-adic roof functions associated to the metric and the Legendre-Fenchel dual of the v-adic Ronkin function of the Laurent polynomial of the cycle.
引用
收藏
页码:2403 / 2443
页数:41
相关论文
共 50 条
  • [41] A primer on toric varieties
    Heuberger, Liana
    EUROPEAN JOURNAL OF MATHEMATICS, 2022, 8 (03) : 952 - 971
  • [42] Residues in toric varieties
    Cattani, E
    Cox, D
    Dickenstein, A
    COMPOSITIO MATHEMATICA, 1997, 108 (01) : 35 - 76
  • [43] FIBERED TORIC VARIETIES
    Khovanskii, Askold
    Monin, Leonid
    MOSCOW MATHEMATICAL JOURNAL, 2023, 23 (04) : 545 - 558
  • [44] Interpolation of toric varieties
    Dickenstein, Alicia
    Di Rocco, Sandra
    Piene, Ragni
    NEW YORK JOURNAL OF MATHEMATICS, 2024, 30 : 1498 - 1516
  • [45] GAUSSMAPS OF TORIC VARIETIES
    Furukawa, Katsuhisa
    Ito, Atsushi
    TOHOKU MATHEMATICAL JOURNAL, 2017, 69 (03) : 431 - 454
  • [46] Endomotives of toric varieties
    Jin, Zhaorong
    Marcolli, Matilde
    JOURNAL OF GEOMETRY AND PHYSICS, 2014, 77 : 48 - 71
  • [47] Arithmetic toric varieties
    Elizondo, E. Javier
    Lima-Filho, Paulo
    Sottile, Frank
    Teitler, Zach
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (2-3) : 216 - 241
  • [48] Toric degenerations of toric varieties and tropical curves
    Nishinou, Takeo
    Siebert, Bernd
    DUKE MATHEMATICAL JOURNAL, 2006, 135 (01) : 1 - 51
  • [49] A primer on toric varieties
    Liana Heuberger
    European Journal of Mathematics, 2022, 8 : 952 - 971
  • [50] Extensions of Toric Varieties
    Sahin, Mesut
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):