Numerical Homogenization of Anisotropic Static Elastic Properties of Soft Mudrocks

被引:0
|
作者
Norouzi, Emad [1 ]
Li, Biao [1 ]
Erkmen, Emre [1 ]
机构
[1] Concordia Univ, Dept Bldg Civil & Environm Engn, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
CONCRETE;
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Soft mudrocks have low permeability and are mostly treated as sealing geological formations. Clay-rich soft mudrocks are also classified as the transversely isotropic (TI) material due to the intrinsic preferred fabric orientation. The TI elastic properties of soft mudrocks are highly dependent on the containing mineralogical compositions and clay fractions. Thus numerical modeling is necessary to estimate the behavior of soft mudrocks. In this study, a two-dimensional homogenization model is employed to assess the elastic moduli of soft mudrocks. Clay-water composites are treated as the hosting matrix, and non-clay minerals are placed in the REV as the inclusions. The inclusions are placed randomly in different sizes. In order to consider the partial flexibility between the non-clay minerals and clay-water composites, an imperfect boundary is defined between the inclusions and matrix using the eXtended Finite Element Method (XFEM). The periodic boundary condition is imposed on the REV, and the homogenized anisotropic elastic moduli of rocks with different clay fractions are estimated. The numerical results were validated using published experimental data on the static TI elastic properties of soft Colorado shale samples. The results show the predictable decreasing trends in elastic modulus of soft mudrocks with increasing of the clay fraction.
引用
收藏
页码:589 / 598
页数:10
相关论文
共 50 条
  • [31] On the shape of effective inclusion in the Maxwell homogenization scheme for anisotropic elastic composites
    Sevostianov, Igor
    MECHANICS OF MATERIALS, 2014, 75 : 45 - 59
  • [32] Anisotropic elastic properties of human cortical bone tissue inferred from inverse homogenization and resonant ultrasound spectroscopy
    Cai, Xiran
    Peralta, Laura
    Brenner, Renald
    Iori, Gianluca
    Cassereau, Didier
    Raum, Kay
    Laugier, Pascal
    Grimal, Quentin
    MATERIALIA, 2020, 11
  • [33] An enhanced asymptotic homogenization method of the static and dynamics of elastic composite laminates
    Chen, CM
    Kikuchi, N
    Rostam-Abadi, F
    COMPUTERS & STRUCTURES, 2004, 82 (4-5) : 373 - 382
  • [34] Homogenization of biaxial composite materials: dissipative anisotropic properties
    Mackay, TG
    Weiglhofer, WS
    JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2000, 2 (05): : 426 - 432
  • [35] Numerical homogenization of a linearly elastic honeycomb lattice structure and with and results
    Moeini, Mohammadreza
    Begon, Mickael
    Levesque, Martin
    MECHANICS OF MATERIALS, 2022, 167
  • [36] An anisotropic elastic-viscoplastic model for soft clays
    Yin, Zhen-Yu
    Chang, Ching S.
    Karstunen, Minna
    Hicher, Pierre-Yves
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2010, 47 (05) : 665 - 677
  • [37] Contact instabilities of anisotropic and inhomogeneous soft elastic films
    Tomar, Gaurav
    Sharma, Ashutosh
    PHYSICAL REVIEW E, 2012, 85 (02):
  • [38] HOMOGENIZATION OF STATIC THERMOELASTIC PROPERTIES OF MEDIA WITH PERIODIC STRUCTURES
    ENGRAND, D
    RECHERCHE AEROSPATIALE, 1978, (05): : 283 - 286
  • [39] Structure, morphology and mechanical properties of Rhectophyllum camerunense (RC) plant fiber. Part II: Computational homogenization of the anisotropic elastic properties
    Beakou, Alexis
    Ntenga, Richard
    COMPUTATIONAL MATERIALS SCIENCE, 2011, 50 (04) : 1550 - 1558
  • [40] Static Wetting of a Liquid Droplet on a Soft Elastic Substrate
    Wu, J.
    Ru, C. Q.
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2023, 90 (11):