Correspondence between Feynman diagrams and operators in quantum field theory that emerges from tensor model

被引:6
|
作者
Amburg, N. [1 ,2 ,3 ]
Itoyama, H. [4 ,5 ,6 ]
Mironov, Andrei [1 ,3 ,7 ]
Morozov, Alexei [1 ,3 ,8 ,9 ]
Vasiliev, D. [1 ,3 ,9 ]
Yoshioka, R. [6 ]
机构
[1] NRC Kurchatov Inst, AI Alikhanov Inst Theoret & Expt Phys, B Cheremushkinskaya 25, Moscow 117259, Russia
[2] Natl Res Univ Higher Sch Econ, Myasnitskaya Ul 20, Moscow 101000, Russia
[3] RAS, Kharkevich Inst, Inst Informat Transmiss Problems, Bolshoy Karetny Per 19,Build 1, Moscow 127051, Russia
[4] Nambu Yoichiro Inst Theoret & Expt Phys NITEP, Osaka, Japan
[5] Osaka City Univ, Grad Sch Sci, Dept Math & Phys, Osaka, Japan
[6] Osaka City Univ Adv Math Inst OCAMI, Sumiyoshi Ku, 3-3-138 Sugimoto, Osaka 5588585, Japan
[7] Lebedev Phys Inst, IE Tamm Theory Dept, Leninsky Prospect 53, Moscow 119991, Russia
[8] UC Santa Barbara, Kavli Inst Theoret Phys, Konh Hall, Santa Barbara, CA 93106 USA
[9] Moscow Inst Phys & Technol, Dolgoprudnyi 141701, Russia
来源
EUROPEAN PHYSICAL JOURNAL C | 2020年 / 80卷 / 05期
基金
美国国家科学基金会;
关键词
MATRIX MODELS;
D O I
10.1140/epjc/s10052-020-8013-8
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A novel functorial relationship in perturbative quantum field theory is pointed out that associates Feynman diagrams (FD) having no external line in one theory Th1 with singlet operators in another one Th2 having an additional U(N) symmetry and is illustrated by the case where Th1 and Th2 are respectively the rank r - 1 and the rank r complex tensor model. The values of FD in Th1 agree with the large N limit of the Gaussian average of those operators in Th2. The recursive shift in rank by this FD functor converts numbers into vectors, then into matrices, then into rank 3 tensors and so on. ThisFDfunctor can straightforwardly act on the d dimensional tensorial quantum field theory (QFT) counterparts as well. In the case of rank 2-rank 3 correspondence, it can be combined with the geometrical pictures of the dual of the original FD, namely, equilateral triangulations (Grothendieck's dessins d'enfant) to form a triality which may be regarded as a bulk-boundary correspondence.
引用
收藏
页数:5
相关论文
共 50 条