Global crop yields can be lifted by timely adaptation of growing periods to climate change

被引:107
|
作者
Minoli, Sara [1 ]
Jagermeyr, Jonas [1 ,2 ,3 ]
Asseng, Senthold [4 ]
Urfels, Anton [5 ,6 ,7 ]
Muller, Christoph [1 ]
机构
[1] Leibniz Assoc, Potsdam Inst Climate Impact Res PIK, D-14412 Potsdam, Germany
[2] NASA, Goddard Inst Space Studies, New York, NY 10025 USA
[3] Columbia Univ, Climate Sch, New York, NY 10025 USA
[4] Tech Univ Munich, Dept Life Sci Engn, D-85354 Freising Weihenstephan, Germany
[5] Int Maize & Wheat Improvement Ctr CIMMYT, South Asia Reg Off, Sustainable Intensificat Program, Khumaltar 44700, Lalitpur, Nepal
[6] Wageningen Univ & Res, Water Resources Management Grp, NL-6708 PB Wageningen, Netherlands
[7] Wageningen Univ & Res, Ctr Crop Syst Anal, NL-6708 PB Wageningen, Netherlands
关键词
MAJOR CROPS; IMPACTS; TEMPERATURE; MANAGEMENT; MAIZE; WHEAT; DATES; PHENOLOGY; GROWTH;
D O I
10.1038/s41467-022-34411-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Adaptive management of crop growing periods by adjusting sowing dates and cultivars is one of the central aspects of crop production systems, tightly connected to local climate. However, it is so far underrepresented in crop-model based assessments of yields under climate change. In this study, we integrate models of farmers' decision making with biophysical crop modeling at the global scale to simulate crop calendars adaptation and its effect on crop yields of maize, rice, sorghum, soybean and wheat. We simulate crop growing periods and yields (1986-2099) under counterfactual management scenarios assuming no adaptation, timely adaptation or delayed adaptation of sowing dates and cultivars. We then compare the counterfactual growing periods and corresponding yields at the end of the century (2080-2099). We find that (i) with adaptation, temperature-driven sowing dates (typical at latitudes >30 degrees N-S) will have larger shifts than precipitation-driven sowing dates (at latitudes <30 degrees N-S); (ii) later-maturing cultivars will be needed, particularly at higher latitudes; (iii) timely adaptation of growing periods would increase actual crop yields by similar to 12%, reducing climate change negative impacts and enhancing the positive CO2 fertilization effect. Despite remaining uncertainties, crop growing periods adaptation require consideration in climate change impact assessments.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Influence of Climate Change on Berry Crop Growing in Latvia
    Kampuss, K.
    Strautina, S.
    Laugale, V.
    WORKSHOP ON BERRY PRODUCTION IN CHANGING CLIMATE CONDITIONS AND CULTIVATION SYSTEMS. COST-ACTION 863: EUROBERRY RESEARCH: FROM GENOMICS TO SUSTAINABLE PRODUCTION, QUALITY AND HEALTH, 2009, 838 : 45 - 49
  • [42] APPROACHES TO MEASURING THE IMPACT OF DROUGHT AND CLIMATE CHANGE ON CROP YIELDS
    Mach, Jiri
    Hoskova, Pavla
    Slaboch, Josef
    AGRARIAN PERSPECTIVES XXIX: TRENDS AND CHALLENGES OF AGRARIAN SECTOR, 2020, : 206 - 214
  • [43] Climate impacts on crop yields in Central Argentina. Adaptation strategies
    Rolla, Alfredo L.
    Nunez, Mario N.
    Guevara, Edgardo R.
    Meira, Santiago G.
    Rodriguez, Gabriel R.
    Ortiz de Zarate, Maria Ines
    AGRICULTURAL SYSTEMS, 2018, 160 : 44 - 59
  • [44] Variation in the global-scale impacts of climate change on crop productivity due to climate model uncertainty and adaptation
    Osborne, Tom
    Rose, Gillian
    Wheeler, Tim
    AGRICULTURAL AND FOREST METEOROLOGY, 2013, 170 : 183 - 194
  • [45] Macroeconomic Impacts of Climate Change Driven by Changes in Crop Yields
    Fujimori, Shinichiro
    Iizumi, Toshichika
    Hasegawa, Tomoko
    Takakura, Jun'ya
    Takahashi, Kiyoshi
    Hijioka, Yasuaki
    SUSTAINABILITY, 2018, 10 (10)
  • [46] Implications of climate change for diseases, crop yields and food security
    Adrian C. Newton
    Scott N. Johnson
    Peter J. Gregory
    Euphytica, 2011, 179 : 3 - 18
  • [47] An analysis of the impact of climate change on crop yields and yield variability
    Isik, Murat
    Devadoss, Stephen
    APPLIED ECONOMICS, 2006, 38 (07) : 835 - 844
  • [48] Implications of climate change for diseases, crop yields and food security
    Newton, Adrian C.
    Johnson, Scott N.
    Gregory, Peter J.
    EUPHYTICA, 2011, 179 (01) : 3 - 18
  • [49] The Influence of Climate Change on Global Crop Productivity
    Lobell, David B.
    Gourdji, Sharon M.
    PLANT PHYSIOLOGY, 2012, 160 (04) : 1686 - 1697
  • [50] Impacts of future climate change on California perennial crop yields: Model projections with climate and crop uncertainties
    Lobell, David B.
    Field, Christopher B.
    Cahill, Kimberly Nicholas
    Bonfils, Celine
    AGRICULTURAL AND FOREST METEOROLOGY, 2006, 141 (2-4) : 208 - 218