Sulfur/Nitrogen Co-Doped In-Plane Porous Carbon Nanosheets as Superior Anode of Potassium-Ion Batteries

被引:6
|
作者
Li, Guilan [1 ]
Xu, Anding [1 ]
Zhong, Fulan [2 ]
Huang, Chuyun [1 ]
Sun, Hao [2 ]
Xu, Zhiguang [3 ]
Wu, Songping [2 ,4 ]
Yan, Yurong [1 ,5 ]
机构
[1] South China Univ Technol, Sch Mat Sci & Engn, Guangzhou 510641, Guangdong, Peoples R China
[2] South China Univ Technol, Sch Chem & Chem Engn, Guangzhou 510641, Guangdong, Peoples R China
[3] South China Normal Univ, Sch Chem, Minist Educ, Key Lab Theoret Chem Environm, Guangzhou 510006, Peoples R China
[4] Guangdong Key Lab Fuel Cell Technol, Guangzhou 510641, Peoples R China
[5] Key Lab Guangdong High Property & Funct Polymer M, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon nanosheets; DFT calculations; low temperature graphitization; porous structure; potassium-ion batteries anode; K-ION; PERFORMANCE; NITROGEN; SULFUR; CAPACITY; GRAPHENE; STORAGE;
D O I
10.1002/batt.202100379
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Carbonaceous materials are regarded as prospective anode candidates of potassium-ion batteries. However, the rate capability and cycling stability of classic carbon materials are still far from satisfactory. Herein, we exploit a facile and low-cost strategy to enable the precise synthesis of sulfur/nitrogen co-doped in-plane porous carbon nanosheets with fishnet-shaped microstructure (SN-CNSs). The well-designed in-plane porous structure and the interconnected carbon flake network can accelerate the diffusion of potassium ions, alleviate volume expansion, and provide sufficient active sites. As a result, the SN-CNSs deliver an impressively reversible capacity of 248 mAh g(-1) at a current density of 1 Ag-1 after 4500 cycles, and an excellent rate capacity of 137.3 mAhg(-1) after 4000 cycles under 5 Ag-1. Density functional theory (DFT) calculations further verify the advantage of S/N co-doping in the adsorption/diffusion of K-ion in SN-CNSs materials. Such an excellent performance shows that SN-CNSs possess a great potential to be a superior anode of potassium-ion batteries.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Nitrogen and sulfur co-doped hierarchical porous carbon as functional sulfur host for lithium-sulfur batteries
    Wang, Biao
    Hu, Jinlong
    Zhang, Lingzhi
    MATERIALS TODAY COMMUNICATIONS, 2021, 27
  • [42] Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors
    Li, Yiju
    Wang, Guiling
    Wei, Tong
    Fan, Zhuangjun
    Yan, Peng
    NANO ENERGY, 2016, 19 : 165 - 175
  • [43] Monodispersed Ni2P nanodots embedded in N, P co-doped porous carbon as super stable anode material for potassium-ion batteries
    Yan, Zhanheng
    Huang, Zhongyuan
    Yao, Yong
    Yang, Xinxin
    Li, Huanxin
    Xu, Chenxi
    Kuang, Yafei
    Zhou, Haihui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 858 (858)
  • [44] Sulfur and nitrogen co-doped hollow carbon spheres for sodium-ion batteries with superior cyclic and rate performance
    Ye, Jianchuan
    Zang, Jun
    Tian, Zhaowu
    Zheng, Mingsen
    Dong, Quanfeng
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (34) : 13223 - 13227
  • [45] Bismuthene from sonoelectrochemistry as a superior anode for potassium-ion batteries
    Shen, Chao
    Cheng, Tianle
    Liu, Chunyan
    Huang, Lu
    Cao, Mengyang
    Song, Ganqiang
    Wang, Dong
    Lu, Bingan
    Wang, Jianwen
    Qin, Chichu
    Huang, Xingkang
    Peng, Ping
    Li, Xilong
    Wu, Yingpeng
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (01) : 453 - 460
  • [46] Nitrogen/sulphur co-doped porous carbon derived from wasted wet wipes as promising anode material for high performance capacitive potassium-ion storage
    Wang, Lifeng
    Li, Sijia
    Li, Jianlin
    Yan, Su
    Zhang, Xinyu
    Wei, Denghu
    Xing, Zheng
    Zhuang, Quanchao
    Ju, Zhicheng
    MATERIALS TODAY ENERGY, 2019, 13 : 195 - 204
  • [47] Nitrogen and Sulfur Co-doped Two-Dimensional Highly Porous Carbon Nanosheets for High-Performance Lithium-Sulfur Batteries
    Khan, Shaukat
    Ul-Islam, Mazhar
    Sajjad, Muhammad
    Hussain, Iftikhar
    Idrees, Muhammad
    Saeed, Muhammad
    Imran, Muhammad
    Javed, Muhammad Sufyan
    ENERGY & FUELS, 2022, 36 (04) : 2220 - 2227
  • [48] Construction of Bimetallic Selenides Encapsulated in Nitrogen/Sulfur Co-Doped Hollow Carbon Nanospheres for High-Performance Sodium/Potassium-Ion Half/Full Batteries
    Sun Zhonghui
    Wu Xing-Long
    Xu Jianan
    Qu Dongyang
    Zhao Bolin
    Gu Zhenyi
    Li Wenhao
    Liang Haojie
    Gao Lifang
    Fan Yingying
    Zhou Kai
    Han Dongxue
    Gan Shiyu
    Zhang Yuwei
    Niu Li
    SMALL, 2020, 16 (19)
  • [49] Lotus Leaf-Derived Hierarchically Porous Hard Carbon Nanosheets as Anode for Highly Robust Potassium-Ion Batteries
    Xiao, Xiang
    Li, Shun
    Yuan, Kai
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2020, 12 (03) : 392 - 399
  • [50] Sulfur-Doped Carbon for Potassium-Ion Battery Anode: Insight into the Doping and Potassium Storage Mechanism of Sulfur
    Qiu, Daping
    Zhang, Biao
    Zhang, Teng
    Shen, Tong
    Zhao, Zijing
    Hou, Yanglong
    ACS NANO, 2022, 16 (12) : 21443 - 21451