We study the structure of the Eiesenstein component of Hida's ordinary p-adic Hecke algebra attached to modular forms, in connection with the companion forms in the space of modular forms (mod p). We show that such an algebra is a Gorenstein ring if certain space of modular forms (mod p) having companions is one-dimensional; and also give a numerical criterion for this one-dimensionality. This in part overlaps with a work of Skinner and Wiles; but our method, based on a work of Ulmer, is totally different. We then consider consequences of the above mentioned Gorenstein property. We especially discuss the connection with the Iwasawa theory.
机构:
UPMC, CNRS, UMR 7586, Inst Math Jussieu Paris Rive Gauche, 4 Pl Jussieu, F-75005 Paris, FranceUPMC, CNRS, UMR 7586, Inst Math Jussieu Paris Rive Gauche, 4 Pl Jussieu, F-75005 Paris, France
Aubert, Anne-Marie
Baum, Paul
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Math, University Pk, PA 16802 USAUPMC, CNRS, UMR 7586, Inst Math Jussieu Paris Rive Gauche, 4 Pl Jussieu, F-75005 Paris, France
Baum, Paul
Plymen, Roger
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southampton, Sch Math, Southampton SO17 1BJ, Hants, England
Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, EnglandUPMC, CNRS, UMR 7586, Inst Math Jussieu Paris Rive Gauche, 4 Pl Jussieu, F-75005 Paris, France
Plymen, Roger
Solleveld, Maarten
论文数: 0引用数: 0
h-index: 0
机构:
Radboud Univ Nijmegen, Heyendaalseweg 135, NL-6525 AJ Nijmegen, NetherlandsUPMC, CNRS, UMR 7586, Inst Math Jussieu Paris Rive Gauche, 4 Pl Jussieu, F-75005 Paris, France