Iwahori-Hecke algebras for p-adic loop groups

被引:24
|
作者
Braverman, Alexander [1 ]
Kazhdan, David [2 ]
Patnaik, Manish M. [3 ]
机构
[1] Brown Univ, Dept Math, Providence, RI 02912 USA
[2] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
[3] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
基金
欧盟地平线“2020”; 美国国家科学基金会; 欧洲研究理事会;
关键词
2-DIMENSIONAL LOCAL-FIELD; KAC-MOODY GROUPS; REPRESENTATIONS; DECOMPOSITION; SERIES;
D O I
10.1007/s00222-015-0612-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is a continuation of Braverman and Kazhdan (Ann Math (2) 174(3):1603-1642, 2011) in which the first two authors have introduced the spherical Hecke algebra and the Satake isomorphism for an untwisted affine Kac-Moody group over a non-archimedian local field. In this paper we develop the theory of the Iwahori-Hecke algebra associated to these same groups. The resulting algebra is shown to be closely related to Cherednik's double affine Hecke algebra. Furthermore, using these results, we give an explicit description of the affine Satake isomorphism, generalizing Macdonald's formula for the spherical function in the finite-dimensional case. The results of this paper have been previously announced in Braverman and Kazhdan (European Congress of Mathematics. European Mathematical Society, Zurich, 2014).
引用
收藏
页码:347 / 442
页数:96
相关论文
共 50 条