DENSITIES OF SHORTEST PATH LENGTHS IN SPATIAL STOCHASTIC NETWORKS

被引:6
|
作者
Voss, Florian [1 ]
Gloaguen, Catherine [2 ]
Fleischer, Frank [3 ]
Schmidt, Volker [4 ]
机构
[1] Boehringer Ingelheim Pharma GmbH & Co KG, Global BCA, D-55216 Ingelheim, Germany
[2] Orange Labs, Issy Les Moulineaux, France
[3] Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
[4] Univ Ulm, Inst Stochast, Ulm, Germany
关键词
Palm calculus; Point processes; Random tessellations; Stochastic geometry; Telecommunication systems; STATIONARY ITERATED TESSELLATIONS; DISTRIBUTIONAL PROPERTIES; WIRELESS NETWORKS; SIMULATION; TESTS; CELL;
D O I
10.1080/15326349.2011.542735
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a spatial stochastic model for telecommunication networks, the stochastic subscriber line model, and we investigate the distribution of the typical shortest path length between network components. Therefore, we derive a representation formula for the probability density of this distribution which is based on functionals of the so-called typical serving zone. Using this formula, we construct an estimator for the density of the typical shortest path length and we analyze the statistical properties of this estimator. Moreover, we introduce new simulation algorithms for the typical serving zone which are used in a numerical study in order to estimate the density and moments of the typical shortest path length for different specific models.
引用
收藏
页码:141 / 167
页数:27
相关论文
共 50 条
  • [21] Reliable Shortest Path Problems in Stochastic Time-Dependent Networks
    Chen, Bi Yu
    Lam, William H. K.
    Sumalee, Agachai
    Li, Qingquan
    Tam, Mei Lam
    JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2014, 18 (02) : 177 - 189
  • [22] Complexity of Some Inverse Shortest Path Lengths Problems
    Cui, Tingting
    Hochbaum, Dorit S.
    NETWORKS, 2010, 56 (01) : 20 - 29
  • [23] ALGORITHM 562 - SHORTEST-PATH LENGTHS [H]
    PAPE, U
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1980, 6 (03): : 450 - 455
  • [24] A shortest path problem on a network with fuzzy arc lengths
    Okada, S
    Soper, T
    FUZZY SETS AND SYSTEMS, 2000, 109 (01) : 129 - 140
  • [25] Stochastic shortest path with unlimited hops
    Das, Ananya
    Martel, Charles
    INFORMATION PROCESSING LETTERS, 2009, 109 (05) : 290 - 295
  • [26] Variations on the stochastic shortest path problem
    1600, Springer Verlag (8931):
  • [27] Variations on the Stochastic Shortest Path Problem
    Randour, Mickael
    Raskin, Jean-Francois
    Sankur, Ocan
    VERIFICATION, MODEL CHECKING, AND ABSTRACT INTERPRETATION (VMCAI 2015), 2015, 8931 : 1 - 18
  • [28] Stochastic shortest path problems with recourse
    Polychronopoulos, GH
    Tsitsiklis, JN
    NETWORKS, 1996, 27 (02) : 133 - 143
  • [29] The shortest path problem with discrete fuzzy arc lengths
    Kung, JY
    Chuang, TN
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (2-3) : 263 - 270
  • [30] Dynamic stochastic shortest path algorithm
    Zhang Shui-Jian
    Liu Xue-Jun
    Yang Yang
    ACTA PHYSICA SINICA, 2012, 61 (16)