Numerical simulations of JET discharges with the ITER-like wall for different nitrogen seeding scenarios

被引:11
|
作者
Telesca, G. [1 ]
Ivanova-Stanik, I. [2 ]
Zagorski, R. [2 ]
Brezinsek, S. [3 ]
Czarnecka, A. [2 ]
Drewelow, P. [4 ]
Giroud, C. [5 ]
Marsen, S. [4 ]
Wischmeier, M. [6 ]
机构
[1] Univ Ghent, Dept Appl Phys, B-9000 Ghent, Belgium
[2] EURATOM IPPLM Assoc, Inst Plasma Phys & Laser Microfus, Warsaw, Poland
[3] Assoc EURATOM FZJ, IEK 4, FZ Julich GmbH, Julich, Germany
[4] EURATOM, Max Planck Inst Plasmaphys, D-17491 Greifswald, Germany
[5] EURATOM CCFE Fus Assoc, Abingdon OX14 3DB, Oxon, England
[6] EURATOM, Max Planck Inst Plasmaphys, D-8578 Garching, Germany
[7] JET EFDA, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
关键词
COREDIV CODE;
D O I
10.1016/j.jnucmat.2014.11.024
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Two classes of nitrogen seeded pulses are here considered: pulses at high triangularity, high confinement with moderate gas puffing and N seeding rates and pulses at low triangularity, lower confinement with higher gas puffing and N seeding. For the high-delta pulses the power radiation fraction, f(rad), is normally about 0.5 while at low delta f f(rad) as high as 0.7 is achieved. For the simulations we have used COREDIV code, which self-consistently couples the plasma core with the plasma edge and the main plasma with impurities. To reproduce numerically the main experimental parameters of the two classes of pulses two different settings had to be applied to COREDIV, as the perpendicular transport and recycling in the SOL and the power deposition profile in the core. Simulations suggest that higher values for f(rad) might be achieved with N seeding only at low density and/or higher heating power. (C) 2014 Published by Elsevier B.V.
引用
收藏
页码:577 / 581
页数:5
相关论文
共 50 条
  • [31] Current status of the JET ITER-like Wall Project
    Matthews, G. F.
    Edwards, P.
    Greuner, H.
    Loving, A.
    Maier, H.
    Mertens, Ph
    Philipps, V.
    Riccardo, V.
    Rubel, M.
    Ruset, C.
    Scmidt, A.
    Villedieu, E.
    PHYSICA SCRIPTA, 2009, T138
  • [32] Overview of experimental preparation for the ITER-Like Wall at JET
    Brezinsek, S.
    Fundamenski, W.
    Eich, T.
    Coad, J. P.
    Giroud, C.
    Huber, A.
    Jachmich, S.
    Joffrin, E.
    Krieger, K.
    McCormick, K.
    Lehnen, M.
    Loarer, T.
    de la Luna, E.
    Maddison, G.
    Matthews, G. F.
    Mertens, Ph.
    Nunes, I.
    Philipps, V.
    Riccardo, V.
    Rubel, M.
    Stamp, M. F.
    Tsalas, M.
    JOURNAL OF NUCLEAR MATERIALS, 2011, 415 (01) : S936 - S942
  • [33] Overview of LH Experiments In JET with an ITER-Like Wall
    Kirov, K. K.
    Baranov, Yu.
    Barbato, E.
    Brix, M.
    Corrigan, G.
    Ekedahl, A.
    Goniche, M.
    Mailloux, J.
    Petrzilka, V.
    Rimini, F.
    Stamp, M.
    RADIOFREQUENCY POWER IN PLASMAS, 2014, 1580 : 390 - 393
  • [34] Testing of tungsten coatings in JET for the ITER-like wall
    Coad, J. P.
    Hole, D. E.
    Kolodinska, E.
    Likonen, J.
    Lindig, S.
    Matthews, G. F.
    Mayer, M.
    Philipps, V.
    Riccardo, V.
    Widdowson, A.
    JOURNAL OF NUCLEAR MATERIALS, 2009, 390-91 : 992 - 995
  • [35] Be ITER-like wall at the JET tokamak under plasma
    Tsavalas, P.
    Lagoyannis, A.
    Mergia, K.
    Rubel, M.
    Triantou, K.
    Harissopulos, S.
    Kokkoris, M.
    Petersson, P.
    Abduallev, S.
    Abhangi, M.
    Abreu, P.
    Afzal, M.
    Aggarwal, K. M.
    Ahlgren, T.
    Ahn, J. H.
    Aho-Mantila, L.
    Aiba, N.
    Airila, M.
    Albanese, R.
    Aldred, V.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allinson, M.
    Alper, B.
    Alves, E.
    Ambrosino, G.
    Ambrosino, R.
    Amicucci, L.
    Amosov, V.
    Sunden, E. Andersson
    Angelone, M.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Appelbee, C.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arshad, S.
    Ash, A.
    Ashikawa, N.
    Aslanyan, V.
    Asunta, O.
    Auriemma, F.
    Austin, Y.
    Avotina, L.
    Axton, M. D.
    PHYSICA SCRIPTA, 2017, T170
  • [36] Tungsten coatings for the JET ITER-like wall project
    Maier, H.
    Neu, R.
    Greuner, H.
    Hopf, Ch.
    Matthews, G. F.
    Piazza, G.
    Hirai, T.
    Counsell, G.
    Courtois, X.
    Mitteau, R.
    Gauthier, E.
    Likonen, J.
    Maddaluno, G.
    Philipps, V.
    Riccardi, B.
    Ruset, C.
    JOURNAL OF NUCLEAR MATERIALS, 2007, 363 (1-3) : 1246 - 1250
  • [37] The JET ITER-like wall experiment: First results and lessons for ITER
    Horton, Lorne
    FUSION ENGINEERING AND DESIGN, 2013, 88 (6-8) : 434 - 439
  • [38] Physics of plasma burn-through and DYON simulations for the JET ITER-like wall
    Kim, Hyun-Tae
    Sips, A. C. C.
    NUCLEAR FUSION, 2013, 53 (08)
  • [39] ICRF specific plasma wall interactions in JET with the ITER-like wall
    Bobkov, Vl.
    Arnoux, G.
    Brezinsek, S.
    Coenen, J. W.
    Colas, L.
    Clever, M.
    Czarnecka, A.
    Braun, F.
    Dux, R.
    Huber, A.
    Jacquet, P.
    Klepper, C.
    Lerche, E.
    Maggi, C.
    Marcotte, F.
    Maslov, M.
    Matthews, G.
    Mayoral, M. L.
    McCormick, K.
    Meigs, A.
    Milanesio, D.
    Monakhov, I.
    Neu, R.
    Noterdaeme, J. -M.
    Puetterich, Th.
    Rimini, F.
    Van Rooj, G.
    Sergienko, G.
    Van Eester, D.
    JOURNAL OF NUCLEAR MATERIALS, 2013, 438 : S160 - S165
  • [40] Global erosion and deposition patterns in JET with the ITER-like wall
    Baron-Wiechec, A.
    Widdowson, A.
    Alves, E.
    Ayres, C. F.
    Barradas, N. P.
    Brezinsek, S.
    Coad, J. P.
    Catarino, N.
    Heinola, K.
    Likonen, J.
    Matthews, G. F.
    Mayer, M.
    Petersson, P.
    Rubel, M.
    van Renterghem, W.
    Uytdenhouwen, I.
    JOURNAL OF NUCLEAR MATERIALS, 2015, 463 : 157 - 161