Double crossed products of locally compact quantum groups

被引:35
|
作者
Baaj, S
Vaes, S
机构
[1] Univ Clermont Ferrand, Lab Math Pures, F-63177 Aubiere, France
[2] Inst Math Jussieu, F-75013 Paris, France
关键词
locally compact quantum groups; matched pair; Radon-Nikodym derivative; quantum subgroup;
D O I
10.1017/S1474748005000034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a matched pair of locally compact quantum groups, we construct the double crossed product as a locally compact quantum group. This construction generalizes Drinfeld's quantum double construction. We study the modular theory and the C*-algebraic properties of these double crossed products, as well as several links between double crossed products and bicrossed products. In an appendix, we study the Radon-Nikodyni derivative of a weight under a quantum group action (following Yamanouchi) and obtain, as a corollary, a new characterization of closed quantum subgroups.
引用
收藏
页码:135 / 173
页数:39
相关论文
共 50 条
  • [31] IDEMPOTENT STATES ON LOCALLY COMPACT QUANTUM GROUPS
    Salmi, Pekka
    Skalski, Adam
    QUARTERLY JOURNAL OF MATHEMATICS, 2012, 63 (04): : 1009 - 1032
  • [32] Generating Functionals for Locally Compact Quantum Groups
    Skalski, Adam
    Viselter, Ami
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (14) : 10981 - 11009
  • [33] A REPRESENTATION THEOREM FOR LOCALLY COMPACT QUANTUM GROUPS
    Junge, Marius
    Neufang, Matthias
    Ruan, Zhong-Jin
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2009, 20 (03) : 377 - 400
  • [34] Hopf images in locally compact quantum groups
    Joziak, Pawel
    Kasprzak, Pawel
    Soltan, Piotr M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (01) : 141 - 166
  • [35] Averaging multipliers on locally compact quantum groups
    Daws, Matthew
    Krajczok, Jacek
    Voigt, Christian
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2025, 111 (03):
  • [36] The Haagerup property for locally compact quantum groups
    Daws, Matthew
    Fima, Pierre
    Skalski, Adam
    White, Stuart
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 711 : 189 - 229
  • [37] Property T for locally compact quantum groups
    Chen, Xiao
    Ng, Chi-Keung
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (03)
  • [38] On the similarity problem for locally compact quantum groups
    Brannan, Michael
    Youn, Sang-Gyun
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (04) : 1313 - 1337
  • [39] A Note on Amenability of Locally Compact Quantum Groups
    Soltan, Piotr M.
    Viselter, Ami
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (02): : 424 - 430
  • [40] Intermediate subfactors and locally compact quantum groups
    Enock, M
    JOURNAL OF OPERATOR THEORY, 1999, 42 (02) : 305 - 330