Parameter Space Approach for Performance Mapping using Lyapunov Stability

被引:0
|
作者
Pyta, Lorenz [1 ]
Vosswinkel, Rick [2 ,3 ]
Schroedel, Frank [4 ]
Bajcinca, Naim [5 ]
Abel, Dirk [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Automat Control, Aachen, Germany
[2] Tech Univ Dresden, Fac Elect & Comp Engn, Dresden, Germany
[3] HTWK Leipzig, Fac Elect Engn & Informat Technol, Leipzig, Germany
[4] IAV GmbH Entwicklungszentrum Chemnitz Stollberg, Stollberg, Germany
[5] Univ Kaiserslautern, Fac Mech & Proc Engn, Kaiserslautern, Germany
关键词
SYSTEMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Calculating the complete controller parameter space, which guarantees specified closed loop performance requirements of a given linear system, is non-trivial. In this paper, a new approach to solve this problem is presented using Lyapunov stability formulations. This method has several advantages in comparison to the existing parameter space approach methods: Currently, the parameter space calculation methods are only applicable for a very restricted system class. They rely on frequency sweeping and the stabilizing parameter space may only be calculated through means of discretization. The proposed method avoids this while reducing the computational complexity and increasing the practicality of the method at the same time. An extensive analysis of the presented method is shown on a practical application example: the longitudinal vehicle guidance (ACC).
引用
收藏
页码:121 / 126
页数:6
相关论文
共 50 条
  • [21] Stability and L2 Performance Analysis of LPV-IO Systems Using Parameter-Dependent Lyapunov Functions
    Wollnack, Simon
    Werner, Herbert
    2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 1543 - 1548
  • [22] A Lyapunov approach to incremental stability properties
    Angeli, D
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (03) : 410 - 421
  • [23] A Lyapunov approach to strong stability of semigroups
    Paunonen, Lassi
    Zwart, Hans
    SYSTEMS & CONTROL LETTERS, 2013, 62 (08) : 673 - 678
  • [24] Lyapunov Stability: A Geometric Algebra Approach
    H. Sira-Ramírez
    B. C. Gómez-León
    M. A. Aguilar-Orduña
    Advances in Applied Clifford Algebras, 2022, 32
  • [25] Lyapunov Stability: A Geometric Algebra Approach
    Sira-Ramirez, H.
    Gomez-Leon, B. C.
    Aguilar-Orduna, M. A.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2022, 32 (02)
  • [26] Robust Control of UAVs using the Parameter Space Approach
    Abdelmoeti, Samer
    Carloni, Raffaella
    2016 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016), 2016, : 5632 - 5637
  • [27] Robust stability/performance analysis for linear time-invariant polynomially parameter-dependent systems using polynomially parameter-dependent Lyapunov functions
    Sato, Masayuki
    Peaucelle, Dimith
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 5809 - 5811
  • [28] Robust stability/performance analysis for linear time-invariant polytopically parameter-dependent systems using polynomially parameter-dependent Lyapunov functions
    Sato, Masayuki
    Peaucelle, Dimitri
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 5816 - +
  • [29] Stability of Linear Parameter Varying Systems based on Parameter Dependent Lyapunov Functions
    Aouani, Nedia
    Salhi, Salah
    Garcia, Germain
    Ksouri, Mekki
    2012 16TH IEEE MEDITERRANEAN ELECTROTECHNICAL CONFERENCE (MELECON), 2012, : 1021 - 1024
  • [30] Using Computational Steering to Explore the Parameter Space of Stability in a Suspension
    Hecht, Martin
    Harting, Jens
    HIGH PERFORMANCE COMPUTING IN SCIENCE AND ENGINEERING '09, 2010, : 33 - 48