RELAXATION LIMIT AND GLOBAL EXISTENCE OF SMOOTH SOLUTIONS OF COMPRESSIBLE EULER-MAXWELL EQUATIONS

被引:67
|
作者
Peng, Yue-Jun [1 ]
Wang, Shu [2 ]
Gu, Qilong [3 ]
机构
[1] CNRS, Math Lab, UMR 6620, F-63171 Aubiere, France
[2] Beijing Univ Technol, Coll Appl Sci, Beijing 100022, Peoples R China
[3] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
关键词
Euler-Maxwell equations; drift-diffusion equations; zero-relaxation limit; global existence of smooth solutions; DISSIPATIVE HYPERBOLIC SYSTEMS; QUASI-NEUTRAL LIMIT; HYDRODYNAMIC MODEL; POISSON SYSTEM; CONVEX ENTROPY; TIME LIMITS; SEMICONDUCTORS; CONVERGENCE; PLASMAS; PARAMETERS;
D O I
10.1137/100786927
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider smooth periodic solutions for the Euler-Maxwell equations, which are a symmetrizable hyperbolic system of balance laws. We proved that as the relaxation time tends to zero, the Euler-Maxwell system converges to the drift-diffusion equations at least locally in time. The global existence of smooth solutions is established near a constant state with an asymptotic stability property.
引用
收藏
页码:944 / 970
页数:27
相关论文
共 50 条
  • [21] A new characterization of the dissipation structure and the relaxation limit for the compressible Euler-Maxwell system
    Crin-Barat, Timothee
    Peng, Yue-Jun
    Shou, Ling-Yun
    Xu, Jiang
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 289 (02)
  • [22] Convergence of the nonisentropic Euler-Maxwell equations to compressible Euler-Poisson equations
    Yang, Jianwei
    Wang, Shu
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (12)
  • [23] Non-uniqueness for the compressible Euler-Maxwell equations
    Mao, Shunkai
    Qu, Peng
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (07)
  • [24] Asymptotic Stability of the Compressible Euler-Maxwell Equations to Euler-Poisson Equations
    Liu, Qingqing
    Yin, Haiyan
    Zhu, Changjiang
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2014, 63 (04) : 1085 - 1108
  • [25] The diffusive relaxation limit of non-isentropic Euler-Maxwell equations for plasmas
    Yang, Jianwei
    Wang, Shu
    Li, Yong
    Luo, Dang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 380 (01) : 343 - 353
  • [26] On a nonexistence of global smooth solutions to compressible Euler equations
    Rozanova, OS
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, VOLS I AND II, 2001, 140 : 811 - 820
  • [27] Convergence of the Euler-Maxwell two-fluid system to compressible Euler equations
    Yang, Jianwei
    Wang, Shu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 417 (02) : 889 - 903
  • [28] Global existence and relaxation limit for smooth solutions to the Euler-Poisson model for semiconductors
    Alì, G
    Bini, D
    Rionero, S
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 32 (03) : 572 - 587
  • [29] THE ASYMPTOTIC BEHAVIOR OF GLOBALLY SMOOTH SOLUTIONS OF BIPOLAR NONISENTROPIC COMPRESSIBLE EULER-MAXWELL SYSTEM FOR PLASMA
    Wang, Shu
    Feng, Yuehong
    Li, Xin
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (05) : 3429 - 3457
  • [30] Combined relaxation and non-relativistic limit of non-isentropic Euler-Maxwell equations
    Yang, Jianwei
    APPLICABLE ANALYSIS, 2015, 94 (04) : 747 - 760