Mandelbrot Sets and Julia Sets in Picard-Mann Orbit

被引:26
|
作者
Zou, Cui [1 ]
Shahid, Abdul Aziz [2 ]
Tassaddiq, Asifa [3 ]
Khan, Arshad [4 ]
Ahmad, Maqbool [2 ]
机构
[1] Qingdao Huanghai Univ, Big Data Inst, Qingdao 266427, Peoples R China
[2] Univ Lahore, Dept Math & Stat, Lahore 54000, Pakistan
[3] Majmaah Univ, Coll Comp & Informat Sci, Al Majmaah 11952, Saudi Arabia
[4] Univ Agr, Inst Business & Management Sci, Peshawar 25120, Pakistan
关键词
Julia set; Mandelbrot set; Picard-Mann iteration; escape criterion; ITERATION SCHEME;
D O I
10.1109/ACCESS.2020.2984689
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The purpose of this paper is to introduce the Mandelbrot and Julia sets by using Picard-Mann iteration procedure. Escape criteria is established which plays an important role to generate Mandelbrot and Julia sets. Also, numerous graphical pictures of these sets have been visualized and certain examples have been recognized. Presented results shows that fractal images generated by Picard-Mann iteration procedure are entirely different from those generated in Mann orbit.
引用
收藏
页码:64411 / 64421
页数:11
相关论文
共 50 条
  • [21] Mandelbrot set and Julia sets of fractional order
    Marius-F. Danca
    Michal Fečkan
    Nonlinear Dynamics, 2023, 111 : 9555 - 9570
  • [22] Visualization of Mandelbrot and Julia Sets of Mobius Transformations
    Mork, Leah K.
    Ulness, Darin J.
    FRACTAL AND FRACTIONAL, 2021, 5 (03)
  • [23] Analyzing complex dynamics of Mandelbrot and Julia sets generated using Picard-SP iteration scheme
    Nawaz, Bashir
    Gdawiec, Krzysztof
    Ullah, Kifayat
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2025,
  • [24] A Picard-Mann hybrid iterative process
    Khan, Safeer Hussain
    FIXED POINT THEORY AND APPLICATIONS, 2013, : 1 - 10
  • [25] Julia and Mandelbrot Sets for Dynamics over the Hyperbolic Numbers
    Blankers, Vance
    Rendfrey, Tristan
    Shukert, Aaron
    Shipman, Patrick D.
    FRACTAL AND FRACTIONAL, 2019, 3 (01) : 1 - 9
  • [26] Asymptotically conformal similarity between Julia and Mandelbrot sets
    Graczyk, Jacek
    Swiatek, Grzegorz
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (5-6) : 309 - 314
  • [27] Additive perturbed generalized Mandelbrot-Julia sets
    Wang Xing-yuan
    Chang Pei-jun
    Gu Ni-ni
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 189 (01) : 754 - 765
  • [28] An overview of parallel visualisation methods for Mandelbrot and Julia sets
    Drakopoulos, V
    Mimikou, N
    Theoharis, T
    COMPUTERS & GRAPHICS-UK, 2003, 27 (04): : 635 - 646
  • [29] On the Julia sets of a noise-perturbed Mandelbrot map
    Argyris, J
    Karakasidis, TE
    Andreadis, I
    CHAOS SOLITONS & FRACTALS, 2002, 13 (02) : 245 - 252
  • [30] Generalization of 3D Mandelbrot and Julia sets
    Jin Cheng
    Jian-rong Tan
    Journal of Zhejiang University-SCIENCE A, 2007, 8 : 134 - 141