THE INFLUENCE OF EDGE STRUCTURE ON THE THERMAL CONDUCTIVITY OF GRAPHENE

被引:0
|
作者
Bi, Kedong [1 ]
Chen, Yunfei [1 ]
Wang, Yujuan [1 ]
Chen, Minhua [1 ]
机构
[1] Southeast Univ, Sch Mech Engn & Jiangsu, Key Lab Design & Mfg Micronano Biomed Instruments, Nanjing 211189, Peoples R China
来源
PROCEEDINGS OF THE ASME MICRO/NANOSCALE HEAT AND MASS TRANSFER INTERNATIONAL CONFERENCE, VOL 3 | 2010年
关键词
graphene; thermal conductivity; molecular dynamics; non-equilibrium; CARBON NANOTUBES;
D O I
暂无
中图分类号
O414.1 [热力学];
学科分类号
摘要
Non-equilibrium molecular dynamics (NEMD) simulation method is used to investigate the in-plane thermal conductivity of graphene with different structures. The simulation results demonstrate that, as the length of simulated region increasing, the in-plane thermal conductivity of graphene will become larger. Through investigating the influence of width and edge structure on the in-plane thermal conductivity of graphene, it is also found that the thermal conductivity of wider simulated sample is higher than that of the narrower, and with similar length, the in-plane thermal conductivity of armchair graphene is a little higher than that of zigzag one. The effect of temperature on the thermal conductivity of graphene is also studied in this work.
引用
收藏
页码:279 / 282
页数:4
相关论文
共 50 条
  • [21] Influence of the material structure on the thermal conductivity of the clothing textiles
    Lizak, Pavol
    Mojumdar, Subhash C.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2015, 119 (02) : 865 - 869
  • [22] Influence of doped nitrogen and vacancy defects on the thermal conductivity of graphene nanoribbons
    Haiying Yang
    Yunqing Tang
    Jie Gong
    Yu Liu
    Xiaoliang Wang
    Yanfang Zhao
    Ping Yang
    Shuting Wang
    Journal of Molecular Modeling, 2013, 19 : 4781 - 4788
  • [23] Influence of doped nitrogen and vacancy defects on the thermal conductivity of graphene nanoribbons
    Yang, Haiying
    Tang, Yunqing
    Gong, Jie
    Liu, Yu
    Wang, Xiaoliang
    Zhao, Yanfang
    Yang, Ping
    Wang, Shuting
    JOURNAL OF MOLECULAR MODELING, 2013, 19 (11) : 4781 - 4788
  • [24] Size and edge roughness dependence of thermal conductivity for vacancy-defective graphene ribbons
    Xie, Guofeng
    Shen, Yulu
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (14) : 8822 - 8827
  • [25] Thermal conductivity of graphene and graphite
    Alofi, A.
    Srivastava, G. P.
    PHYSICAL REVIEW B, 2013, 87 (11)
  • [26] Phonon thermal conductivity of graphene
    Jacimovski, Stevo K.
    Bukurov, Masa
    Setrajcic, Jovan P.
    Rakovic, Dejan I.
    SUPERLATTICES AND MICROSTRUCTURES, 2015, 88 : 330 - 337
  • [27] Thermal conductivity of defective graphene
    Zhang, Y. Y.
    Cheng, Y.
    Pei, Q. X.
    Wang, C. M.
    Xiang, Y.
    PHYSICS LETTERS A, 2012, 376 (47-48) : 3668 - 3672
  • [28] Lattice Thermal Conductivity of Graphene
    Kamatagi, M. D.
    Nissimagoudar, A. S.
    Sankeshwar, N. S.
    Mulimani, B. G.
    SOLID STATE PHYSICS, PTS 1 AND 2, 2012, 1447 : 945 - +
  • [29] The Electronic Thermal Conductivity of Graphene
    Kim, Tae Yun
    Park, Cheol-Hwan
    Marzari, Nicola
    NANO LETTERS, 2016, 16 (04) : 2439 - 2443
  • [30] GRAPHENE'S THERMAL CONDUCTIVITY
    Jacoby, Mitch
    CHEMICAL & ENGINEERING NEWS, 2010, 88 (15) : 5 - 5