Convergence of the Peaceman-Rachford approximation for reaction-diffusion systems

被引:16
|
作者
Descombes, S
Ribot, M
机构
[1] Ecole Normale Super Lyon, CNRS, UMR 5669, UMPA, F-69364 Lyon 07, France
[2] Univ Lyon 1, CNRS, UMR 5585, MAPLY, F-69622 Villeurbanne, France
关键词
D O I
10.1007/s00211-002-0434-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider a reaction-diffusion system of the form u(t)-MDeltau+F(u)=0, where M is a mxm matrix whose spectrum is included in {Rz>0}. We approximate it by the Peaceman-Rachford approximation defined by P(t)=(1+tF/2)(-1)(1+tMDelta/2)(1-tMDelta/2)(-1)(1-tF/2). We prove convergence of this scheme and show that it is of order two.
引用
收藏
页码:503 / 525
页数:23
相关论文
共 50 条
  • [41] 一种惯性邻近的Peaceman-Rachford分裂方法
    窦明圆
    李慧云
    刘新为
    中国科学:数学, 2017, 47 (02) : 333 - 348
  • [42] AN INDEFINITE-PROXIMAL-BASED STRICTLY CONTRACTIVE PEACEMAN-RACHFORD SPLITTING METHOD
    Gu, Yan
    Jiang, Bo
    Han, Deren
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023, 41 (06): : 1017 - 1040
  • [43] Relaxed inertial proximal Peaceman-Rachford splitting method for separable convex programming
    Yongguang He
    Huiyun Li
    Xinwei Liu
    Frontiers of Mathematics in China, 2018, 13 : 555 - 578
  • [44] CONVERGENCE TO EQUILIBRIA FOR A CLASS OF REACTION-DIFFUSION SYSTEMS
    ENGLER, H
    HETZER, G
    OSAKA JOURNAL OF MATHEMATICS, 1992, 29 (03) : 471 - 481
  • [45] The convergence of a class of quasimonotone reaction-diffusion systems
    Wang, Y
    Jiang, JF
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 64 : 395 - 408
  • [46] ON THE EQUIVALENCE OF PEACEMAN-RACHFORD SPLITTING METHOD AND SOME TYPICAL ALTERNATING DIRECTION METHOD OF MULTIPLIERS
    Wu, Can
    Wang, Qiuyu
    Xiao, Yunhai
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2018, 19 (11) : 1933 - 1944
  • [47] Generalized peaceman-rachford splitting method for separable convex programming with applications to image processing
    Sun M.
    Liu J.
    Journal of Applied Mathematics and Computing, 2016, 51 (1-2) : 605 - 622
  • [48] Convergence analysis of an improved Bregman-type Peaceman-Rachford splitting algorithm for nonconvex nonseparable linearly constrained optimization problems
    Jian, Jinbao
    Ma, Guodong
    Liu, Pengjie
    Xu, Jiawei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 426
  • [49] Peaceman-Rachford ADI scheme for the two dimensional flow of a second-grade fluid
    Momoniat, E.
    Harley, C.
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2012, 22 (02) : 228 - 242
  • [50] A strictly contractive Peaceman-Rachford splitting method for the doubly nonnegative relaxation of the minimum cut problem
    Li, Xinxin
    Pong, Ting Kei
    Sun, Hao
    Wolkowicz, Henry
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2021, 78 (03) : 853 - 891