Koepke Machines and Satisfiability for Infinitary Propositional Languages

被引:4
|
作者
Carl, Merlin [1 ,2 ]
Loewe, Benedikt [3 ,4 ,5 ,6 ]
Rin, Benjamin G. [7 ]
机构
[1] Univ Konstanz, Fachbereich Math & Stat, D-78457 Constance, Germany
[2] Univ Passau, Fak Informat & Math, Innstr 33, D-94032 Passau, Germany
[3] Univ Amsterdam, Inst Log Language & Computat, Postbus 94242, NL-1090 GE Amsterdam, Netherlands
[4] Univ Hamburg, Fachbereich Math, Bundesstr 55, D-20146 Hamburg, Germany
[5] Univ Cambridge, Churchill Coll, Christs Coll, Wilberforce Rd, Cambridge CB3 0WA, England
[6] Univ Cambridge, Fac Math, Wilberforce Rd, Cambridge CB3 0WA, England
[7] Univ Utrecht, Dept Filosofie Religiewetenschap, Janskerkhof 13, NL-3512 BL Utrecht, Netherlands
来源
关键词
TIME TURING-MACHINES; NOT-EQUAL NP;
D O I
10.1007/978-3-319-58741-7_19
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider complexity theory for Koepke machines, also known as Ordinal Turing Machines (OTMs), and define infinitary complexity classes infinity-P and infinity-NP and the OTM analogue of the satisfiability problem, denoted by infinity-SAT. We show that infinity-SAT is in infinity-NP and infinity-NP-hard (i.e., the problem is infinity-NP-complete), but not OTM decidable.
引用
收藏
页码:187 / 197
页数:11
相关论文
共 50 条
  • [21] PARTIAL ISOMORPHISMS AND INFINITARY LANGUAGES
    CALAIS, JP
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1972, 18 (05): : 435 - 456
  • [22] On ordinals accessible by infinitary languages
    Shelah, Saharon
    Vaisanen, Pauli
    Vaananen, Jouko
    FUNDAMENTA MATHEMATICAE, 2005, 186 (03) : 193 - 214
  • [23] BOOLEAN ALGEBRAS AND INFINITARY LANGUAGES
    RESSAYRE, JP
    LASSAIGN.R
    JOURNAL OF SYMBOLIC LOGIC, 1974, 39 (02) : 383 - 383
  • [24] Economic sanctions as the propositional satisfiability problem
    Dragan Miljkovic
    Policy Sciences, 2002, 35 : 1 - 15
  • [25] Learning from conflicts in propositional satisfiability
    Youssef Hamadi
    Saïd Jabbour
    Lakhdar Saïs
    4OR, 2012, 10 : 15 - 32
  • [26] A NEW ALGORITHM FOR THE PROPOSITIONAL SATISFIABILITY PROBLEM
    GALLO, G
    PRETOLANI, D
    DISCRETE APPLIED MATHEMATICS, 1995, 60 (1-3) : 159 - 179
  • [27] Complete local search for propositional satisfiability
    Fang, H
    Ruml, W
    PROCEEDING OF THE NINETEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND THE SIXTEENTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2004, : 161 - 166
  • [28] GRASP: A search algorithm for propositional satisfiability
    Marques-Silva, JP
    Sakallah, KA
    IEEE TRANSACTIONS ON COMPUTERS, 1999, 48 (05) : 506 - 521
  • [29] Dependent and independent variables in propositional satisfiability
    Giunchiglia, E
    Maratea, M
    Tacchella, A
    LOGICS IN ARTIFICIAL INTELLIGENCE 8TH, 2002, 2424 : 296 - 307
  • [30] A New Branching Heuristic for Propositional Satisfiability
    Zhao, Yujuan
    Song, Zhenming
    2016 INTERNATIONAL CONFERENCE ON FUZZY THEORY AND ITS APPLICATIONS (IFUZZY), 2016,