Modeling of chaotic motion of gyrostats in resistant environment on the base of dynamical systems with strange attractors

被引:19
|
作者
Doroshin, Anton V. [1 ]
机构
[1] Natl Res Univ, Res Dept, SP Korolev Samara State Aerosp Univ, Samara 443086, Russia
基金
美国国家科学基金会;
关键词
Rigid body; Gyrostat; Resistant environment; Strange attractors; Lorenz; Rossler; Newton-Leipnik and Sprott systems; Lyapunov exponents; Fast Fourier transformation; Poincare sections; FLOW;
D O I
10.1016/j.cnsns.2010.10.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A chaotic motion of gyrostats in resistant environment is considered with the help of well known dynamical systems with strange attractors: Lorenz, Rossler, Newton-Leipnik and Sprott systems. Links between mathematical models of gyrostats and dynamical systems with strange attractors are established. Power spectrum of fast Fourier transformation, gyrostat longitudinal axis vector hodograph and Lyapunov exponents are find. These numerical techniques show chaotic behavior of motion corresponding to strange attractor in angular velocities phase space. Cases for perturbed gyrostat motion with variable periodical inertia moments and with periodical internal rotor relative angular moment are considered; for some cases Poincare sections areobtained. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:3188 / 3202
页数:15
相关论文
共 50 条
  • [41] NONSTATIONARY STOCHASTIC MOTION MODELING BY DYNAMICAL SYSTEMS
    Orlov, Yurii N.
    Kislitsyn, Alexey A.
    PROCEEDINGS OF THE 33RD INTERNATIONAL ECMS CONFERENCE ON MODELLING AND SIMULATION (ECMS 2019), 2019, 33 (01): : 466 - 472
  • [42] Synchronization of strange non-chaotic attractors via unidirectional coupling of quasiperiodically-forced systems
    G. Sivaganesh
    M. Daniel Sweetlin
    A. Arulgnanam
    Journal of the Korean Physical Society, 2016, 69 : 124 - 130
  • [43] Synchronization of strange non-chaotic attractors via unidirectional coupling of quasiperiodically-forced systems
    Sivaganesh, G.
    Sweetlin, M. Daniel
    Arulgnanam, A.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2016, 69 (02) : 124 - 130
  • [44] Circuit application of chaotic systems: modeling, dynamical analysis and control
    Lai, Qiang
    Bao, Bocheng
    Chen, Chaoyang
    Kengne, Jacques
    Akgul, Akif
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2021, 230 (7-8): : 1691 - 1694
  • [45] Reservoir Computing in Reduced Order Modeling for Chaotic Dynamical Systems
    Nogueira Jr, Alberto C.
    Carvalho, Felipe C. T.
    Almeida, Joao Lucas S.
    Codas, Andres
    Bentivegna, Eloisa
    Watson, Campbell D.
    HIGH PERFORMANCE COMPUTING - ISC HIGH PERFORMANCE DIGITAL 2021 INTERNATIONAL WORKSHOPS, 2021, 12761 : 56 - 72
  • [46] Circuit application of chaotic systems: modeling, dynamical analysis and control
    Qiang Lai
    Bocheng Bao
    Chaoyang Chen
    Jacques Kengne
    Akif Akgul
    The European Physical Journal Special Topics, 2021, 230 : 1691 - 1694
  • [47] Time Series Prediction by Chaotic Modeling of Nonlinear Dynamical Systems
    Basharat, Arslan
    Shah, Mubarak
    2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 1941 - 1948
  • [48] Chaotic attractors of discrete dynamical systems used in the core of evolutionary algorithms: state of art and perspectives
    Zelinka, Ivan
    Senkerik, Roman
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2023, 29 (9-12) : 1202 - 1227
  • [49] Hausdorff metric based training of kernels to learn attractors with application to 133 chaotic dynamical systems
    Yang, Lu
    Hamzi, Boumediene
    Kevrekidis, Yannis
    Owhadi, Houman
    Sun, Xiuwen
    Xie, Naiming
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 466
  • [50] PERSISTENCE OF SUPERTRANSIENTS OF SPATIOTEMPORAL CHAOTIC DYNAMICAL-SYSTEMS IN NOISY ENVIRONMENT
    LAI, YC
    PHYSICS LETTERS A, 1995, 200 (06) : 418 - 422