Complex Projective Synchronization of Fractional Complex Systems Using Nonlinear Control Method

被引:0
|
作者
Yadav, Vijay K. [1 ]
Das, Subir [1 ]
Cafagna, Donato [2 ]
机构
[1] Indian Inst Technol, Dept Math Sci, Varanasi 221005, Uttar Pradesh, India
[2] Univ Salento, Dipartimento Ingn Innovaz, I-73100 Lecce, Italy
关键词
Fractional derivative; Projective synchronization; Chaotic complex systems; Nonlinear control method; ANTI-SYNCHRONIZATION; LORENZ EQUATIONS; CHAOS; CALCULUS; REAL;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The manuscript investigates the complex projective synchronization of two complex non-integer chaotic systems using a nonlinear control method. To this purpose, the nonlinear controller is designed on basis of Lyapunov stability theorems, applying a recent theorem stated for fractional dynamical systems. The simulation results confirm that the suggested approach allows to derive an effective nonlinear control function and to achieve projective chaos synchronization of the complex non-integer Lorenz system and the complex non-integer Lu system.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] On fractional-order hyperchaotic complex systems and their generalized function projective combination synchronization
    Mahmoud, Gamal M.
    Ahmed, Mansour E.
    Abed-Elhameed, Tarek M.
    OPTIK, 2017, 130 : 398 - 406
  • [22] Synchronization and stabilization of fractional second-order nonlinear complex systems
    Mohammad Pourmahmood Aghababa
    Nonlinear Dynamics, 2015, 80 : 1731 - 1744
  • [23] Practical and exact synchronization of complex networks of fractional order nonlinear systems
    Martínez-Martínez, Rafael
    Lugo-Peñaloza, Armando Fabián
    León, Jorge A.
    Fernández-Anaya, Guillermo
    Open Cybernetics and Systemics Journal, 2013, 7 (01): : 47 - 54
  • [24] Synchronization and stabilization of fractional second-order nonlinear complex systems
    Aghababa, Mohammad Pourmahmood
    NONLINEAR DYNAMICS, 2015, 80 (04) : 1731 - 1744
  • [25] Cluster Projective Synchronization of Fractional-Order Complex Network via Pinning Control
    Yang, Li-xin
    He, Wan-sheng
    Zhang, Fan-di
    Jia, Jin-ping
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [26] Generalized complex projective synchronization of chaotic complex systems with unknown parameters
    Ban, Jaepil
    Lee, Jinwoo
    Won, Sangchul
    2014 14TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2014), 2014, : 672 - 677
  • [27] Adaptive Complex Function Projective Synchronization of Uncertain Complex Chaotic Systems
    Zhang, Fangfang
    Liu, Shutang
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2016, 11 (01):
  • [28] Complex modified projective phase synchronization of nonlinear chaotic frameworks with complex variables
    Shammakh, Wafa
    Mahmoud, Emad E.
    Kashkari, Bothayna S.
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (03) : 1265 - 1273
  • [29] Synchronization of Fractional-Order Complex Chaotic System Using Active Control Method
    Du, Chuanhong
    Liu, Licai
    Shi, Shuaishuai
    2019 IEEE 10TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2019, : 817 - 823
  • [30] On projective synchronization of hyperchaotic complex nonlinear systems based on passive theory for secure communications
    Mahmoud, Gamal M.
    Mahmoud, Emad E.
    Arafa, Ayman A.
    PHYSICA SCRIPTA, 2013, 87 (05)