WELL-POSEDNESS IN SOBOLEV SPACES OF THE TWO-DIMENSIONAL MHD BOUNDARY LAYER EQUATIONS WITHOUT VISCOSITY

被引:6
|
作者
Li, Wei-Xi [1 ,2 ]
Xu, Rui [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Computat Sci Hubei Key Lab, Wuhan 430072, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2021年 / 29卷 / 06期
基金
中国国家自然科学基金;
关键词
MHD boundary layer; well-posedness; Sobolev space; GLOBAL EXISTENCE; PRANDTL SYSTEM;
D O I
10.3934/era.2021082
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the two-dimensional MHD Boundary layer system without hydrodynamic viscosity, and establish the existence and uniqueness of solutions in Sobolev spaces under the assumption that the tangential component of magnetic fields dominates. This gives a complement to the previous works of Liu-Xie-Yang [Comm. Pure Appl. Math. 72 (2019)] and Liu-WangXie-Yang [J. Funct. Anal. 279 (2020)], where the well-posedness theory was established for the MHD boundary layer systems with both viscosity and resistivity and with viscosity only, respectively. We use the pseudo-differential calculation, to overcome a new difficulty arising from the treatment of boundary integrals due to the absence of the diffusion property for the velocity.
引用
收藏
页码:4243 / 4255
页数:13
相关论文
共 50 条
  • [31] Well-posedness in super critical Besov spaces for the compressible MHD equations
    Bian, Dongfen
    Yuan, Baoquan
    INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2011, 3 (03) : 383 - 399
  • [32] On the global well-posedness for the two-dimensional Boussinesq equations with horizontal dissipation
    Guo, Meiqi
    Zhang, Qian
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (01) : 322 - 345
  • [33] On the Well-posedness of the Ideal MHD Equations in the Triebel-Lizorkin Spaces
    Chen, Qionglei
    Miao, Changxing
    Zhang, Zhifei
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 195 (02) : 561 - 578
  • [34] WELL-POSEDNESS OF THE PRANDTL EQUATION IN SOBOLEV SPACES
    Alexandre, R.
    Wang, Y. -G.
    Xu, C. -J.
    Yang, T.
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 28 (03) : 745 - 784
  • [35] WELL-POSEDNESS OF THE MHD BOUNDARY LAYER SYSTEM IN GEVREY FUNCTION SPACE WITHOUT STRUCTURAL ASSUMPTION
    Li, Wei-Xi
    Yang, Tong
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (03) : 3236 - 3264
  • [36] THE WELL-POSEDNESS OF TWO-DIMENSIONAL IDEAL FLOW
    SULEM, C
    SULEM, P
    JOURNAL DE MECANIQUE THEORIQUE ET APPLIQUEE, 1983, : 217 - 242
  • [37] Local-in-time well-posedness for compressible MHD boundary layer
    Huang, Yongting
    Liu, Cheng-Jie
    Yang, Tong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (06) : 2978 - 3013
  • [38] Well-posedness of two-dimensional hydroelastic waves
    Ambrose, David M.
    Siegel, Michael
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2017, 147 (03) : 529 - 570
  • [39] Well-Posedness, Blow-up Criteria and Stability for Solutions of the Generalized MHD Equations in Sobolev-Gevrey Spaces
    Guterres, Robert H.
    Melo, Wilberclay G.
    Rocha, Nata F.
    Santos, Thyago S. R.
    ACTA APPLICANDAE MATHEMATICAE, 2021, 176 (01)
  • [40] Well-Posedness, Blow-up Criteria and Stability for Solutions of the Generalized MHD Equations in Sobolev-Gevrey Spaces
    Robert H. Guterres
    Wilberclay G. Melo
    Natã F. Rocha
    Thyago S. R. Santos
    Acta Applicandae Mathematicae, 2021, 176