Persistent spectral hypergraph based machine learning (PSH-ML) for protein-ligand binding affinity prediction

被引:35
|
作者
Liu, Xiang [1 ]
Feng, Huitao [1 ,2 ]
Wu, Jie [3 ]
Xia, Kelin [4 ]
机构
[1] Nankai Univ, Tianjin, Peoples R China
[2] Chongqing Univ Technol, Math Sci Res Ctr, Chongqing, Peoples R China
[3] Hebei Normal Univ, Shijiazhuang, Hebei, Peoples R China
[4] Nanyang Technol Univ, Singapore, Singapore
关键词
Persistent spectral hypergraph; Machine learning; Hodge Laplacian; Drug design; HOMOLOGY; DESCRIPTORS; DIGRAPHS; GRAPHS;
D O I
10.1093/bib/bbab127
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Molecular descriptors are essential to not only quantitative structure activity/property relationship (QSAR/QSPR) models, but also machine learning based chemical and biological data analysis. In this paper, we propose persistent spectral hypergraph (PSH) based molecular descriptors or fingerprints for the first time. Our PSH-based molecular descriptors are used in the characterization of molecular structures and interactions, and further combined with machine learning models, in particular gradient boosting tree (GBT), for protein-ligand binding affinity prediction. Different from traditional molecular descriptors, which are usually based on molecular graph models, a hypergraph-based topological representation is proposed for protein-ligand interaction characterization. Moreover, a filtration process is introduced to generate a series of nested hypergraphs in different scales. For each of these hypergraphs, its eigen spectrum information can be obtained from the corresponding (Hodge) Laplacain matrix. PSH studies the persistence and variation of the eigen spectrum of the nested hypergraphs during the filtration process. Molecular descriptors or fingerprints can be generated from persistent attributes, which are statistical or combinatorial functions of PSH, and combined with machine learning models, in particular, GBT. We test our PSH-GBT model on three most commonly used datasets, including PDBbind-2007, PDBbind-2013 and PDBbind-2016. Our results, for all these databases, are better than all existing machine learning models with traditional molecular descriptors, as far as we know.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] DLSSAffinity: protein-ligand binding affinity prediction via a deep learning model
    Wang, Huiwen
    Liu, Haoquan
    Ning, Shangbo
    Zeng, Chengwei
    Zhao, Yunjie
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (17) : 10124 - 10133
  • [22] A point cloud-based deep learning strategy for protein-ligand binding affinity prediction
    Wang, Yeji
    Wu, Shuo
    Duan, Yanwen
    Huang, Yong
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
  • [23] Enhancing Generalizability in Protein-Ligand Binding Affinity Prediction with Multimodal Contrastive Learning
    Luo, Ding
    Liu, Dandan
    Qu, Xiaoyang
    Dong, Lina
    Wang, Binju
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (06) : 1892 - 1906
  • [24] Structure-based, deep-learning models for protein-ligand binding affinity prediction
    Wang, Debby D.
    Wu, Wenhui
    Wang, Ran
    JOURNAL OF CHEMINFORMATICS, 2024, 16 (01)
  • [25] Development and evaluation of a deep learning model for protein-ligand binding affinity prediction
    Stepniewska-Dziubinska, Marta M.
    Zielenkiewicz, Piotr
    Siedlecki, Pawel
    BIOINFORMATICS, 2018, 34 (21) : 3666 - 3674
  • [26] Improving the prediction of protein-ligand binding affinity using deep learning models
    Rezaei, Mohammad
    Li, Yanjun
    Li, Xiaolin
    Li, Chenglong
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [27] A Comparative Assessment of Ranking Accuracies of Conventional and Machine-Learning-Based Scoring Functions for Protein-Ligand Binding Affinity Prediction
    Ashtawy, Hossam M.
    Mahapatra, Nihar R.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2012, 9 (05) : 1301 - 1313
  • [28] A Comparative Assessment of Predictive Accuracies of Conventional and Machine Learning Scoring Functions for Protein-Ligand Binding Affinity Prediction
    Ashtawy, Hossam M.
    Mahapatra, Nihar R.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2015, 12 (02) : 335 - 347
  • [29] Unsupervised Machine Learning Approach for Identifying Biomechanical Influences on Protein-Ligand Binding Affinity
    Singh, Arjun
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (11) : 623 - 629
  • [30] Structure-based protein-ligand interaction fingerprints for binding affinity prediction
    Wang, Debby D.
    Chan, Moon-Tong
    Yan, Hong
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 6291 - 6300