An algebraic multigrid method for solving very large electromagnetic systems

被引:14
|
作者
Mertens, R
De Gersem, H
Belmans, R
Hameyer, K
Lahaye, D
Vandewalle, S
Roose, D
机构
[1] Katholieke Univ Leuven, Dep EE ESAT, Div ELEN, B-3001 Louvain, Belgium
[2] Katholieke Univ Leuven, Dept Comp Sci, B-3001 Louvain, Belgium
关键词
numerical analysis; electromagnetic analysis; iterative methods; finite element methods;
D O I
10.1109/20.717782
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Although most finite element programs have quite effective iterative solvers such as an incomplete Cholesky (IC) or symmetric successive overrelaxation (SSOR) preconditioned conjugate gradient (CG) method,the solution time may still become unacceptably long for very large systems. Convergence and thus total solution time can be shortened by using better preconditioners such as geometric multigrid methods. Algebraic multigrid methods have the supplementary advantage that no geometric information is needed and can thus be used as black box equation solvers. In case of a finite element solution of a non-linear magnetostatic problem, the algebraic multigrid method reduces the overall computation time by a factor of 6 compared to a SSOR-CG solver.
引用
收藏
页码:3327 / 3330
页数:4
相关论文
共 50 条
  • [21] A Parallel Implementation of the Algebraic Multigrid Method for Solving Problems in Dynamics of Viscous Incompressible Fluid
    Volkov, K. N.
    Kozelkov, A. S.
    Lashkin, S. V.
    Tarasova, N. V.
    Yalozo, A. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2017, 57 (12) : 2030 - 2046
  • [22] A spectral multigrid method combined with MLFMM for solving electromagnetic wave scattering problems
    Rui, Ping-Liang
    Chen, Ru-Shan
    Wang, Dao-Xiang
    Yung, Edward Kai-Ning
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2007, 55 (09) : 2571 - 2577
  • [23] Algebraic multigrid method for nonsymmetric matrices arising in electromagnetic finite-element analyses
    Mifune, T
    Iwashita, T
    Shimasaki, M
    IEEE TRANSACTIONS ON MAGNETICS, 2003, 39 (03) : 1670 - 1673
  • [24] Algebraic multigrid for complex symmetric systems
    Lahaye, D.
    De Gersem, H.
    Vandewalle, S.
    Hameyer, K.
    IEEE Transactions on Magnetics, 2000, 36 (4 I) : 1535 - 1538
  • [25] Algebraic multigrid for complex symmetric systems
    Lahaye, D
    De Gersem, H
    Vandewalle, S
    Hameyer, K
    IEEE TRANSACTIONS ON MAGNETICS, 2000, 36 (04) : 1535 - 1538
  • [26] A NEW SEMISTRUCTURED ALGEBRAIC MULTIGRID METHOD
    Magri, Victor A. P.
    Falgout, Robert D.
    Yang, Ulrike M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (03): : S439 - S460
  • [27] A NEW APPROACH FOR THE ALGEBRAIC MULTIGRID METHOD
    CHANG, Q
    WONG, YS
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1993, 49 (3-4) : 197 - 206
  • [28] An algebraic multigrid method for linear elasticity
    Griebel, M
    Oeltz, D
    Schweitzer, MA
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (02): : 385 - 407
  • [29] Algebraic multigrid for the finite pointset method
    Metsch, Bram
    Nick, Fabian
    Kuhnert, Joerg
    COMPUTING AND VISUALIZATION IN SCIENCE, 2020, 23 (1-4)
  • [30] Algebraic multigrid method for queueing networks
    Chang, QS
    Ma, SQ
    Lei, GY
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1999, 70 (03) : 539 - 552