Analytical study on the fractional anomalous diffusion in a half-plane

被引:14
|
作者
Li, Xicheng [1 ]
Chen, Wen [1 ]
机构
[1] Hohai Univ, Dept Engn Mech, Nanjing, Jiangsu Prov, Peoples R China
基金
中国国家自然科学基金;
关键词
WRIGHT FUNCTIONS; WAVE-EQUATIONS; DYNAMICS;
D O I
10.1088/1751-8113/43/49/495206
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this study, anomalous diffusion in a half-plane with a constant source and a perfect sink at each half of the boundary is considered. The discontinuity of the boundary condition is erased by decomposing the solution into two parts-a symmetric part and an antisymmetric part. The symmetric part which has been studied extensively can be solved by an integral transform method, Green's function method or others. To obtain the solution of the antisymmetric part, a separable similarity solution is assumed and the Erdelyi-Kober-type fractional derivative is used. By doing so, the partial differential equation reduces to an ordinary one. Using the Mellin transform method, the solution of the antisymmetric part in terms of a Fox-H function is obtained. Some figures are given to show the characters of the diffusion process and the influences of different orders of fractional derivatives.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] INVARIANT SUBSPACES IN HALF-PLANE
    Krivosheev, A. S.
    Krivosheeva, O. A.
    Rafikov, A., I
    UFA MATHEMATICAL JOURNAL, 2021, 13 (03): : 57 - 79
  • [42] THE ALGEBRAISTS UPPER HALF-PLANE
    GOSS, D
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 2 (03) : 391 - 415
  • [43] EDGE MAGNETOPLASMONS OF A HALF-PLANE
    Vaman, G.
    ROMANIAN REPORTS IN PHYSICS, 2014, 66 (03) : 704 - 715
  • [44] INVARIANT SUBSPACES IN HALF-PLANE
    Krivosheev, A. S.
    Krivosheeva, O. A.
    UFA MATHEMATICAL JOURNAL, 2020, 12 (03): : 30 - 43
  • [45] A method of solving the diffusion problem for a vortex layer in a viscoplastic half-plane
    Okulova N.N.
    Moscow University Mechanics Bulletin, 2007, 62 (4) : 110 - 115
  • [46] The Liouville equation in a half-plane
    Galvez, Jose A.
    Mira, Pablo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (11) : 4173 - 4187
  • [47] STRESS IN AN INFINITE HALF-PLANE
    MILNETHOMSON, LM
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1947, 43 (02): : 287 - 288
  • [48] IMPULSE RESPONSES OF A HALF-PLANE
    MOHSEN, A
    SENIOR, TBA
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1973, AP21 (02) : 254 - 255
  • [49] Geometric firefighting in the half-plane
    Kim, Sang-Sub
    Klein, Rolf
    Kuebel, David
    Langetepe, Elmar
    Schwarzwald, Barbara
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2021, 95
  • [50] WAVELETS AND THE POINCARE HALF-PLANE
    KLAUDER, JR
    STREATER, RF
    JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (01) : 471 - 478