Bifurcation of relative equilibria in mechanical systems with symmetry

被引:11
|
作者
Chossat, P
Lewis, D
Ortega, JP
Ratiu, TS
机构
[1] UNSA, CNRS, Inst Nonlineaire Nice, F-06560 Valbonne, France
[2] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
[3] Ecole Polytech Fed Lausanne, Ctr Bernoulli, CH-1015 Lausanne, Switzerland
关键词
D O I
10.1016/S0196-8858(02)00503-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The relative equilibria of a symmetric Hamiltonian dynamical system are the critical points of the so-called augmented Hamiltonian. The underlying geometric structure of the system is used to decompose the critical point equations and construct a collection of implicitly defined functions and reduced equations describing the set of relative equilibria in a neighborhood of a given relative equilibrium. The structure of the reduced equations is studied in a few relevant situations. In particular, a persistence result of Lerman and Singer [Nonlinearity 11 (1998) 16371649] is generalized to the framework of Abelian proper actions. Also, a Hamiltonian version of the Equivariant Branching Lemma and a study of bifurcations with maximal isotropy are presented. An elementary example illustrates the use of this approach. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:10 / 45
页数:36
相关论文
共 50 条
  • [31] A geometric characterisation of resonance in Hopf bifurcation from relative equilibria
    Chan, David
    Melbourne, Ian
    PHYSICA D-NONLINEAR PHENOMENA, 2007, 234 (02) : 98 - 104
  • [32] Existence, Stability, and Symmetry of Relative Equilibria with a Dominant Vortex
    Barry, Anna M.
    Hoyer-Leitzel, Alanna
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2016, 15 (04): : 1783 - 1805
  • [33] BIFURCATION OF RELATIVE EQUILIBRIA OF THE (1+3)-BODY PROBLEM
    Corbera, Montserrat
    Cors, Josep
    Llibre, Jaume
    Moeckel, Richard
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (02) : 1377 - 1404
  • [34] Stability analysis of relative equilibria of mechanical systems with cyclic coordinates: a direct approach
    Steiner, W
    ARCHIVE OF APPLIED MECHANICS, 2006, 75 (6-7) : 355 - 363
  • [35] Stability analysis of relative equilibria of mechanical systems with cyclic coordinates: a direct approach
    Wolfgang Steiner
    Archive of Applied Mechanics, 2006, 75 : 355 - 363
  • [36] BIFURCATION AND CHAOS IN MECHANICAL SYSTEMS
    REGA, G
    NONLINEAR DYNAMICS, 1995, 7 (02) : 127 - 128
  • [37] Hamiltonian systems near relative equilibria
    Roberts, M
    Wulff, C
    Lamb, JSW
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 179 (02) : 562 - 604
  • [38] GENERIC BIFURCATION OF HAMILTONIAN-SYSTEMS WITH SYMMETRY
    GOLUBITSKY, M
    STEWART, I
    MARSDEN, J
    PHYSICA D, 1987, 24 (1-3): : 391 - 405
  • [39] Bifurcation and forced symmetry breaking in Hamiltonian systems
    Grabsi, F
    Montaldi, J
    Ortega, JP
    COMPTES RENDUS MATHEMATIQUE, 2004, 338 (07) : 565 - 570
  • [40] Symmetry and relative equilibria of a bicycle system moving on a surface of revolution
    Xiong, Jiaming
    Liu, Caishan
    NONLINEAR DYNAMICS, 2021, 106 (04) : 2859 - 2878