Nanoparticles of arbitrary form in the Maxwell-Garnett theory

被引:0
|
作者
Kozik, S. E. [1 ]
Binhussain, M. A. [2 ]
Kazak, N. S. [1 ]
Agabekov, V. [3 ]
Smirnov, A. G. [1 ]
机构
[1] BI Stepanov Inst Phys, 68 Nezalezhnasti Ave, Minsk 220072, BELARUS
[2] KACST, Natl Ctr Bldg & Construct Technol, Riyadh 11442, Saudi Arabia
[3] NAS Belarus, Inst Chem New Mat, Minsk 220141, BELARUS
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The technique of improvement of the Maxwell-Garnett theory of electric permittivity averaging for precise evaluation of composite material dispersion is demonstrated. According to this approach, a set of adjustable coefficients in depolarization factor are introduced, which are determined in the process of fitting simulated optical spectra to experimentally measured ones. The presentation gives the results of depolarization coefficient calculation from reflection and transmission spectra of simulated in finite difference time domain method test structures and from experimentally measured spectra of samples with non-uniform nanoparticles distribution. The proposed approach shows good convergence with the experimental data and could be used as a versatile dispersion model in optical metrology of composite materials with unknown arbitrary concentration and shapes of inclusions.
引用
收藏
页码:370 / 372
页数:3
相关论文
共 50 条
  • [31] Absorption of electromagnetic radiation by a nanoparticle in a nanocomposite: Going beyond the Maxwell-Garnett approximation
    V. I. Roldughin
    V. M. Rudoy
    Colloid Journal, 2017, 79 : 809 - 814
  • [32] Single metafilm effective medium behavior in optical domain: Maxwell-Garnett approximation and beyond
    Dubrovina, Natalia
    Le Cunff, Loic O.
    Burokur, N.
    Ghasemi, R.
    Degiron, A.
    De Lustrac, A.
    Vial, A.
    Lerondel, G.
    Lupu, A.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2012, 109 (04): : 901 - 906
  • [33] Spectroelectrochemical behavior of electrodeposited Zn on indium tin oxide surfaces and modeling of nanoparticle aggregation via Maxwell-Garnett theory
    Schneps, Connor
    Kegerreis, Jeb
    Richardson, John
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [34] The non-stationary case of the Maxwell-Garnett theory: growth of nanomaterials (2D gold flakes) in solution
    Natarajan, Prakash
    Shalabny, Awad
    Sadhujan, Sumesh
    Idilbi, Ahmad
    Bashouti, Muhammad Y.
    NANOSCALE ADVANCES, 2020, 2 (03): : 1066 - 1073
  • [35] Maxwell-Garnett Description of Permittivity of Onion-Like Carbon-Polystyrene Composites
    Sedelnikova, O. V.
    Gavrilov, N. N.
    Bulusheva, L. G.
    Okotrub, A. V.
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2009, 4 (02) : 267 - 270
  • [36] RENORMALIZED POLARIZABILITY IN THE MAXWELL GARNETT THEORY
    BARRERA, RG
    MONSIVAIS, G
    MOCHAN, WL
    DELCASTILLO, M
    PHYSICA A, 1989, 157 (01): : 369 - 369
  • [37] RENORMALIZED POLARIZABILITY IN THE MAXWELL GARNETT THEORY
    BARRERA, RG
    MONSIVAIS, G
    MOCHAN, WL
    PHYSICAL REVIEW B, 1988, 38 (08) : 5371 - 5379
  • [38] SIZE-DEPENDENT MAXWELL-GARNETT FORMULA FROM AN INTEGRAL-EQUATION FORMALISM
    LAKHTAKIA, A
    OPTIK, 1992, 91 (03): : 134 - 137
  • [39] On the piezoresistive behavior of carbon fibers - Cantilever-based testing method and Maxwell-Garnett effective medium theory modeling
    Yao, Yanbo
    Luo, Jiangjiang
    Duan, Xiaoshuang
    Liu, Tao
    Zhang, Yonggang
    Liu, Baihua
    Yu, Muhuo
    CARBON, 2019, 141 : 283 - 290
  • [40] COMPARISON OF EFFECTIVE MEDIUM AND MAXWELL-GARNETT PREDICTIONS FOR DIELECTRIC-CONSTANTS OF GRANULAR METALS
    GITTLEMAN, JI
    ABELES, B
    PHYSICAL REVIEW B, 1977, 15 (06): : 3273 - 3275