Linear-time algorithms for computing maximum-density sequence segments with bioinformatics applications

被引:29
|
作者
Goldwasser, MH
Kao, MY
Lu, HI
机构
[1] St Louis Univ, Dept Math & Comp Sci, St Louis, MO 63103 USA
[2] Northwestern Univ, Dept Comp Sci, Evanston, IL 60201 USA
[3] Acad Sinica, Inst Informat Sci, Taipei 115, Taiwan
[4] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei, Taiwan
基金
美国国家科学基金会;
关键词
bioinformatics; sequences; density;
D O I
10.1016/j.jcss.2004.08.001
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We study an abstract optimization problem arising from biomolecular sequence analysis. For a sequence A of pairs (a(i), w(i)) for i = 1,..., n and w(i) > 0, a segment A (i, j) is a consecutive subsequence of A starting with index i and ending with index j. The width of A(i, j) is w(i, j) =Sigma(iless than or equal tokless than or equal tok)w(k), and the densith is (Sigma(iless than or equal tokless than or equal toj)a(k))/w(i, j). The maximum-density segment problem takes A and two values L and U as input and asks for a segment of A with the largest possible density among those of width at least L and at most U. When U is unbounded, we provide a relatively simple, O(n)-time algorithm, improving upon the O(n log L)-time algorithm by Lin, Jiang and Chao. We then extend this result, providing an O(n)-time algorithm for the case when both L and U are specified. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:128 / 144
页数:17
相关论文
共 50 条
  • [41] LINEAR-TIME ALGORITHMS FOR WEAKLY-MONOTONE POLYGONS
    HEFFERNAN, PJ
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1993, 3 (03): : 121 - 137
  • [42] Linear-time parameterized algorithms with limited local resources
    Chen, Jianer
    Guo, Ying
    Huang, Qin
    INFORMATION AND COMPUTATION, 2022, 289
  • [43] Simple linear-time algorithms for minimal fixed points
    Liu, XX
    Smolka, SA
    AUTOMATA, LANGUAGES AND PROGRAMMING, 1998, 1443 : 53 - 66
  • [44] Linear-Time Algorithms for Partial \boldmathk -Tree Complements
    A. Gupta
    D. Kaller
    T. Shermer
    Algorithmica, 2000, 27 : 254 - 274
  • [45] On linear-time algorithms for the continuous quadratic knapsack problem
    Kiwiel, K. C.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2007, 134 (03) : 549 - 554
  • [46] LINEAR-TIME BORDER-TRACING ALGORITHMS FOR QUADTREES
    WEBBER, RE
    SAMET, H
    ALGORITHMICA, 1992, 8 (01) : 39 - 54
  • [47] On Linear-Time Algorithms for the Continuous Quadratic Knapsack Problem
    K. C. Kiwiel
    Journal of Optimization Theory and Applications, 2007, 134 : 549 - 554
  • [48] Linear-Time Nearest Point Algorithms for Coxeter Lattices
    McKilliam, Robby G.
    Smith, Warren D.
    Clarkson, I. Vaughan L.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (03) : 1015 - 1022
  • [49] LINEAR-TIME ALGORITHMS AND NP-COMPLETE PROBLEMS
    GRANDJEAN, E
    SIAM JOURNAL ON COMPUTING, 1994, 23 (03) : 573 - 597
  • [50] Linear-Time Approximation Algorithms for Unit Disk Graphs
    da Fonseca, Guilherme D.
    Pereira de Sa, Vinicius G.
    de Figueiredo, Celina M. H.
    APPROXIMATION AND ONLINE ALGORITHMS, WAOA 2014, 2015, 8952 : 132 - 143