Progress on the Synthesis and Application of CuSCN Inorganic Hole Transport Material in Perovskite Solar Cells

被引:44
|
作者
Matebese, Funeka [1 ,2 ]
Taziwa, Raymond [1 ]
Mutukwa, Dorcas [1 ,2 ]
机构
[1] Univ Ft Hare, Ft Hare Inst Technol, ZA-5700 Alice, South Africa
[2] Univ Ft Hare, Dept Chem, ZA-5700 Alice, South Africa
基金
新加坡国家研究基金会;
关键词
perovskite solar cells; hole transport materials; inorganic hole transport materials; CuSCN; PROCESSED COPPER IODIDE; DEPOSITION METHOD; EFFICIENT; STABILITY; PEDOTPSS; LAYERS; TEMPERATURE; PERFORMANCE; ELECTRODEPOSITION; ENHANCEMENT;
D O I
10.3390/ma11122592
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
P-type wide bandgap semiconductor materials such as CuI, NiO, Cu2O and CuSCN are currently undergoing intense research as viable alternative hole transport materials (HTMs) to the spiro-OMeTAD in perovskite solar cells (PSCs). Despite 23.3% efficiency of PSCs, there are still a number of issues in addition to the toxicology of Pb such as instability and high-cost of the current HTM that needs to be urgently addressed. To that end, copper thiocyanate (CuSCN) HTMs in addition to robustness have high stability, high hole mobility, and suitable energy levels as compared to spiro-OMeTAD HTM. CuSCN HTM layer use affordable materials, require short synthesis routes, require simple synthetic techniques such as spin-coating and doctor-blading, thus offer a viable way of developing cost-effective PSCs. HTMs play a vital role in PSCs as they can enhance the performance of a device by reducing charge recombination processes. In this review paper, we report on the current progress of CuSCN HTMs that have been reported to date in PSCs. CuSCN HTMs have shown enhanced stability when exposed to weather elements as the solar devices retained their initial efficiency by a greater percentage. The efficiency reported to date is greater than 20% and has a potential of increasing, as well as maintaining thermal stability.
引用
收藏
页数:19
相关论文
共 50 条
  • [11] Recent progress concerning inorganic hole transport layers for efficient perovskite solar cells
    Elseman, Ahmed Mourtada
    Sajid, Sajid
    Shalan, Ahmed Esmail
    Mohamed, Shaimaa Ali
    Rashad, Mohamed Mohamed
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2019, 125 (07):
  • [12] Review of current progress in inorganic hole-transport materials for perovskite solar cells
    Singh, Rahul
    Singh, Pramod K.
    Bhattacharya, B.
    Rhee, Hee-Woo
    APPLIED MATERIALS TODAY, 2019, 14 : 175 - 200
  • [13] Recent Progress in Inorganic Hole Transport Materials for Efficient and Stable Perovskite Solar Cells
    Bumjin Gil
    Alan Jiwan Yun
    Younghyun Lee
    Jinhyun Kim
    Byungho Lee
    Byungwoo Park
    Electronic Materials Letters, 2019, 15 : 505 - 524
  • [14] Recent progress of inorganic hole transport materials for efficient and stable perovskite solar cells
    Wang, Qingrui
    Lin, Zhenhua
    Su, Jie
    Hu, Zhaosheng
    Chang, Jingjing
    Hao, Yue
    NANO SELECT, 2021, 2 (06): : 1055 - 1080
  • [15] A 16.5% Efficient Perovskite Solar Cells With Inorganic NiO Film as Hole Transport Material
    Guo, Xiaowei
    Luo, Guoling
    Liu, Jiang
    Liao, Cheng
    Wang, Gang
    Li, Shaorong
    IEEE JOURNAL OF PHOTOVOLTAICS, 2018, 8 (04): : 1039 - 1043
  • [16] Organic-inorganic hybrid material for hole transport in inverted perovskite solar cells
    Tingare, Yogesh S.
    Su, Chaochin
    Hsu, Ya-Chun
    Lai, Ning-Wei
    Wang, Wan-Chun
    Lin, Xiang-Ching
    Lai, Penh-Wen
    Yang, Hsuan-Yu
    Lew, Xin-Rui
    Li, Wen-Ren
    CHEMSUSCHEM, 2024, 17 (10)
  • [17] Electrodeposition of porous CuSCN layers as hole-conducting material for perovskite solar cells
    Shlenskaya, Natalia N.
    Tutantsev, Andrey S.
    Belich, Nikolay A.
    Goodilin, Eugene A.
    Gratzel, Michael
    Tarasov, Alexey B.
    MENDELEEV COMMUNICATIONS, 2018, 28 (04) : 378 - 380
  • [18] Spiro-OMeTAD or CuSCN as a preferable hole transport material for carbon-based planar perovskite solar cells
    Yang, Yang
    Hoang, Minh Tam
    Yao, Disheng
    Duy Ngoc Pham
    Tiong, Vincent Tiing
    Wang, Xiaoxiang
    Wang, Hongxia
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (25) : 12723 - 12734
  • [19] Inorganic based hole transport materials for perovskite solar cells
    Karuppuchamy, S.
    Murugadoss, G.
    Ramachandran, K.
    Saxena, Vibha
    Thangamuthu, R.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (10) : 8847 - 8853
  • [20] A Review of Inorganic Hole Transport Materials for Perovskite Solar Cells
    Kung, Po-Kai
    Li, Ming-Hsien
    Lin, Pei-Ying
    Chiang, Yu-Hsien
    Chan, Chia-Ru
    Guo, Tzung-Fang
    Chen, Peter
    ADVANCED MATERIALS INTERFACES, 2018, 5 (22):