On Chip Droplet Characterization: A Practical, High-Sensitivity Measurement of Droplet Impedance in Digital Microfluidics

被引:47
|
作者
Sadeghi, Saman [1 ,2 ]
Ding, Huijiang [1 ,2 ]
Shah, Gaurav J. [1 ,2 ]
Chen, Supin [3 ]
Keng, Pei Yuin [1 ,2 ]
Kim, Chang-Jin CJ [4 ]
van Dam, R. Michael [1 ,2 ]
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Dept Mol & Med Pharmacol, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Crump Inst Mol Imaging, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Biomed Engn, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA
关键词
ON-A-CHIP; MALDI-MS; PLATFORM; DEVICES; SYSTEMS; DIELECTROPHORESIS; ACTUATION;
D O I
10.1021/ac202715f
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We demonstrate a new approach to impedance measurement on digital microfluidics chips for the purpose of simple, sensitive, and accurate volume and liquid composition measurement. Adding only a single series resistor to existing AC droplet actuation circuits, the platform is simple to implement and has negligible effect on actuation voltage. To accurately measure the complex voltage across the resistor (and hence current through the device and droplet), the designed system is based on software-implemented lock-in amplification detection of the voltage drop across the resistor which filters out noise, enabling high-resolution and low-limit signal recovery. We observe picoliter sensitivity with linear correlation of voltage to volume extending to the microliter volumes that can be handled by digital microfluidic devices. Due to the minimal hardware, the system is robust and measurements are highly repeatable. The detection technique provides both phase and magnitude information of the real-time current flowing through the droplet for a full impedance measurement. The sensitivity and resolution of this platform enables it to distinguish between various liquids which, as demonstrated in this paper, could potentially be extended to quantify solute concentrations, liquid mixtures, and presence of analytes.
引用
收藏
页码:1915 / 1923
页数:9
相关论文
共 50 条
  • [41] Droplet menisci recognition by deep learning for digital microfluidics applications
    Danesh, Negar
    Torabinia, Matin
    Moon, Hyejin
    DROPLET, 2025, 4 (01):
  • [42] In-droplet magnetic beads concentration and separation for digital microfluidics
    Wang, Yi Zhong
    Zhao, Yuejun
    Cho, Sung Kwon
    TRANSDUCERS '07 & EUROSENSORS XXI, DIGEST OF TECHNICAL PAPERS, VOLS 1 AND 2, 2007,
  • [43] 3D droplet actuation in digital microfluidics devices
    Abdelgawad, Mohamed
    Wheeler, Aaron R.
    TRANSDUCERS '07 & EUROSENSORS XXI, DIGEST OF TECHNICAL PAPERS, VOLS 1 AND 2, 2007,
  • [44] Droplet Transportation through an Orifice on Electrode for Digital Microfluidics Modulations
    Chu, Ting-Chia
    Lu, Yen-Wen
    MICROMACHINES, 2021, 12 (11)
  • [45] High-sensitivity temperature sensor based on a droplet-like fiber circle
    Xie, Jianglei
    Xu, Ben
    Li, Yi
    Kang, Juan
    Shen, Changyu
    Wang, Jianfeng
    Jin, Yongxing
    Liu, Honglin
    Ni, Kai
    Dong, Xinyong
    Zhao, Chunliu
    Jin, Shangzhong
    APPLIED OPTICS, 2014, 53 (18) : 4085 - 4088
  • [46] Purification of a droplet using negative dielectrophoresis traps in digital microfluidics
    Rezaei Nejad, Hojatollah
    Hoorfar, Mina
    MICROFLUIDICS AND NANOFLUIDICS, 2015, 18 (03) : 483 - 492
  • [47] On-Chip Spyhole Mass Spectrometry for Droplet- Based Microfluidics**
    Gasilova, Natalia
    Yu, Qiuliyang
    Qiao, Liang
    Girault, Hubert H.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (17) : 4408 - 4412
  • [48] Programmable digital droplet microfluidics using a multibarrel capillary bundle
    Hood, Renee R.
    Wyderko, Thomas
    DeVoe, Don L.
    SENSORS AND ACTUATORS B-CHEMICAL, 2015, 220 : 992 - 999
  • [49] High-throughput droplet microfluidics for protein engineering
    Manteca, A.
    Cortajarena, A. L.
    FEBS OPEN BIO, 2022, 12 : 312 - 312
  • [50] A novel high-sensitivity assay to detect a small fraction of mutant IDH1 using droplet digital PCR
    Masaki Hirano
    Fumiharu Ohka
    Sachi Maeda
    Lushun Chalise
    Akane Yamamichi
    Kosuke Aoki
    Akira Kato
    Kuniaki Tanahashi
    Kazuya Motomura
    Yusuke Nishimura
    Masahito Hara
    Keiko Shinjo
    Yutaka Kondo
    Toshihiko Wakabayashi
    Atsushi Natsume
    Brain Tumor Pathology, 2018, 35 : 97 - 105