Synthesis and Tribological Performance of Carbon Nanostructures Formed on AISI 316 Stainless Steel Substrates

被引:3
|
作者
Suarez-Martinez, Reynier [1 ]
Ocampo-Macias, Teoxahual [1 ]
Lara-Romero, Javier [1 ]
Lemus-Ruiz, Jose [2 ]
Jimenez-Aleman, Omar [3 ]
Chinas-Castillo, Fernando [4 ]
Sagaro-Zamora, Roberto [5 ]
Jimenez-Sandoval, Sergio [6 ]
Paraguay-Delgado, Francisco [7 ]
机构
[1] Univ Michoacana, Fac Chem Engn, Edificio V1,Ciudad Univ, Morelia 58060, Michoacan, Mexico
[2] Univ Michoacana, Inst Met Res, Morelia, Michoacan, Mexico
[3] Univ Guadalajara, CUCEI, Dept Projects Engn, Zapopan, Jalisco, Mexico
[4] Inst Tecnol Oaxaca, Dept Mech Engn, Oaxaca, Mexico
[5] Univ Oriente, Fac Mech Engn, Tribol Grp, Santiago De Cuba, Cuba
[6] CINVESTAV, Dept Mat, Queretaro, Queretaro, Mexico
[7] CIMAV, Nanotechnol Natl Lab, Chihuahua, Chihuahua, Mexico
关键词
Carbon nanotubes; Carbon nanofibers; Solid lubrication; Raman; SEM; SPRAY-PYROLYSIS; NATURAL PRECURSOR; SOLID LUBRICATION; TURPENTINE OIL; WEAR BEHAVIOR; DIRECT GROWTH; ALPHA-PINENE; NANOTUBES; FRICTION; OPTIMIZATION;
D O I
10.1007/s11249-016-0769-5
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Carbon nanostructures were directly grown onto standard AISI 316 stainless steel by spray pyrolysis of alpha-pinene, a biorenewable material. Two different nanostructures were formed: (1) multi-walled carbon nanotubes when using ferrocene as an external catalyst mixed with alpha-pinene and (2) ribbon carbon nanofibers when using only a-pinene. In both cases, homogeneous layers of carbon nanostructures randomly distributed and completely covering the metal substrate were observed. Carbon nanotube films were thicker (similar to 230 mu m) than carbon nanofiber films (similar to 180 mu m). A significant friction reduction was observed for both structures; however, carbon nanofibers displayed a lower friction coefficient (similar to 0.15) than carbon nanotubes (similar to 0.20) at 5 N of load for 200 and 2000 cycles. Scanning electron microscopy and Raman spectroscopy analyses of the wear tracks reveal that, upon rubbing, both carbon nanostructures experienced the removal of stacking faults developing large, parallel and smooth graphene layers with low interfacial shear strength which may account for the friction reduction and wear protection observed.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] An investigation on the tribological behaviour of biomimetic placoid and cycloid textures on AISI316L stainless steel
    Ahsan, Midhat
    Bashir, Masrat
    Saleem, Sheikh Shahid
    ENGINEERING RESEARCH EXPRESS, 2025, 7 (01):
  • [22] Modelling the Boronizing Kinetics in AISI 316 Stainless Steel
    Abdellah, Z. Nait
    Keddam, M.
    Elias, A.
    ACTA PHYSICA POLONICA A, 2012, 122 (03) : 588 - 592
  • [23] Investigation of the Structural, Tribological, and Electrochemical Properties of Nitrided and Boronized AISI 316L Stainless Steel
    Cakir, Mevra Aslan
    Koseoglu, Burak
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2023, 76 (06) : 1517 - 1533
  • [24] An investigation on boriding kinetics of AISI 316 stainless steel
    Ozdemir, O.
    Omar, M. A.
    Usta, M.
    Zeytin, S.
    Bindal, C.
    Ucisik, A. H.
    VACUUM, 2008, 83 (01) : 175 - 179
  • [25] Nitrocarburising of AISI 316 stainless steel at low temperature
    Jiang, L.
    Luo, H.
    Zhao, C.
    SURFACE ENGINEERING, 2018, 34 (03) : 205 - 210
  • [27] Diffusion bonding of zirconia to stainless steel AISI 316
    Vegter, RH
    van Helvoort, ATJ
    den Ouden, G
    JOURNAL OF ADVANCED MATERIALS, 2003, 35 (01): : 17 - 24
  • [28] Deformation induced martensite in AISI 316 stainless steel
    Solomon, N.
    Solomon, I.
    REVISTA DE METALURGIA, 2010, 46 (02) : 121 - 128
  • [29] Tribological performance of selective laser melted 316L stainless steel
    Li, Hua
    Ramezani, Maziar
    Li, Ming
    Ma, Chao
    Wang, Jyhwen
    TRIBOLOGY INTERNATIONAL, 2018, 128 : 121 - 129
  • [30] On the Carbon Solubility in Expanded Austenite and Formation of Hagg Carbide in AISI 316 Stainless Steel
    Christiansen, Thomas L.
    Stahl, Kenny
    Brink, Bastian K.
    Somers, Marcel A. J.
    STEEL RESEARCH INTERNATIONAL, 2016, 87 (11) : 1395 - 1405