Automated Analysis of Sleep Study Parameters Using Signal Processing and Artificial Intelligence

被引:0
|
作者
Sohaib, Muhammad [1 ]
Ghaffar, Ayesha [1 ]
Shin, Jungpil [2 ]
Hasan, Md Junayed [3 ]
Suleman, Muhammad Taseer [4 ,5 ]
机构
[1] Lahore Garrison Univ, Dept Software Engn, Lahore 54000, Pakistan
[2] Univ Aizu, Sch Comp Sci & Engn, Aizu Wakamatsu 9658580, Japan
[3] Robert Gordon Univ, Natl Subsea Ctr, Aberdeen AB10 7AQ, Scotland
[4] Lahore Garrison Univ, Digital Forens Res & Serv Ctr, Lahore 54000, Pakistan
[5] Univ Management & Technol Lahore, Sch Syst & Technol, Dept Comp Sci, Lahore 54770, Pakistan
关键词
autoencoders; biomedical signals; deep learning; EEG signals; sleep study; sleep stage classification; EEG;
D O I
10.3390/ijerph192013256
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
An automated sleep stage categorization can readily face noise-contaminated EEG recordings, just as other signal processing applications. Therefore, the denoising of the contaminated signals is inevitable to ensure a reliable analysis of the EEG signals. In this research work, an empirical mode decomposition is used in combination with stacked autoencoders to conduct automatic sleep stage classification with reliable analytical performance. Due to the decomposition of the composite signal into several intrinsic mode functions, empirical mode decomposition offers an effective solution for denoising non-stationary signals such as EEG. Preliminary results showed that through these intrinsic modes, a signal with a high signal-to-noise ratio can be obtained, which can be used for further analysis with confidence. Therefore, later, when statistical features were extracted from the denoised signals and were classified using stacked autoencoders, improved results were obtained for Stage 1, Stage 2, Stage 3, Stage 4, and REM stage EEG signals using this combination.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Gearbox faults identification using vibration signal analysis and artificial intelligence methods
    Identyfikacja uszkodzeń skrzyni biegów za pomocą analizy sygnalu drgań oraz metod sztucznej inteligencji
    1600, Polish Academy of Sciences Branch Lublin (16): : 61 - 65
  • [32] \ Multiple fault identification using vibration signal analysis and artificial intelligence methods
    Zuber, Ninoslav
    Cvetkovic, Dragan
    Bajric, Rusmir
    ACOUSTICS & VIBRATION OF MECHANICAL STRUCTURES, 2013, 430 : 63 - +
  • [33] Automated Histology Analysis [Opportunities for signal processing]
    McCann, Michael T.
    Ozolek, John A.
    Castro, Carlos A.
    Parvin, Bahram
    Kovacevic, Jelena
    IEEE SIGNAL PROCESSING MAGAZINE, 2015, 32 (01) : 78 - 87
  • [34] Automated Imaging of Cataract Surgery Using Artificial Intelligence
    Kim, Young Jae
    Hwang, Sung Ha
    Kim, Kwang Gi
    Nam, Dong Heun
    DIAGNOSTICS, 2025, 15 (04)
  • [35] Automated Identification of Dental Implants Using Artificial Intelligence
    da Mata Santos, Rafael Pereira
    Vieira Oliveira Prado, Higor Eduardo
    Aranha Neto, Idalisio Soares
    Alves de Oliveira, Guilherme Augusto
    Vespasiano Silva, Amaro Ilidio
    Zenobio, Elton Goncalves
    Manzi, Flavio Ricardo
    INTERNATIONAL JOURNAL OF ORAL & MAXILLOFACIAL IMPLANTS, 2021, 36 (05) : 918 - 923
  • [36] Automated histopathological evaluation of pterygium using artificial intelligence
    Kim, Jong Hoon
    Kim, Young Jae
    Lee, Yeon Jeong
    Hyon, Joon Young
    Han, Sang Beom
    Kim, Kwang Gi
    BRITISH JOURNAL OF OPHTHALMOLOGY, 2023, 107 (05) : 627 - 634
  • [37] Automated quantification of penile curvature using artificial intelligence
    Abbas, Tariq O.
    AbdelMoniem, Mohamed
    Chowdhury, Muhammad E. H.
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2022, 5
  • [38] Automated Interpretation of Clinical Electroencephalograms Using Artificial Intelligence
    Tveit, Jesper
    Aurlien, Harald
    Plis, Sergey
    Calhoun, Vince D.
    Tatum, William O.
    Schomer, Donald L.
    Arntsen, Vibeke
    Cox, Fieke
    Fahoum, Firas
    Gallentine, William B.
    Gardella, Elena
    Hahn, Cecil D.
    Husain, Aatif M.
    Kessler, Sudha
    Kural, Mustafa Aykut
    Nascimento, Fabio A.
    Tankisi, Hatice
    Ulvin, Line B.
    Wennberg, Richard
    Beniczky, Sandor
    JAMA NEUROLOGY, 2023, 80 (08) : 805 - 812
  • [39] Artificial Intelligence in Automated Detection of Disinformation: A Thematic Analysis
    Santos, Fatima C. Carrilho
    JOURNALISM AND MEDIA, 2023, 4 (02): : 679 - 687
  • [40] Automated Discourse Analysis via Generative Artificial Intelligence
    Garg, Ryan
    Han, Jaeyoung
    Cheng, Yixin
    Fang, Zheng
    Swiecki, Zachari
    FOURTEENTH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE, LAK 2024, 2024, : 814 - 820