Mid-wavelength and long-wavelength infrared focal planes for smallsat applications

被引:2
|
作者
Gunapala, Sarath [1 ]
Ting, David [1 ]
Rafol, Sir [1 ]
Soibel, Alexander [1 ]
Khoshakhlagh, Arezou [1 ]
Keo, Sam [1 ]
Pepper, Brian [1 ]
Fisher, Anita [1 ]
Hill, Cory [1 ]
Pagano, Thomas [1 ]
Sood, Ashok [2 ]
Zeller, John [2 ]
Lucey, Paul [3 ]
Wright, Robert [3 ]
Nunes, Miguel [3 ]
Flynn, Luke [3 ]
Babu, Sachidananda [4 ]
Ghuman, Parminder [4 ]
机构
[1] CALTECH, Jet Prop Lab, Ctr Infrared Photodetectors, Pasadena, CA 91125 USA
[2] Magnolia Opt Technol Inc, Albany, NY 12203 USA
[3] Univ Hawaii Manoa, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA
[4] NASA, Earth Sci Technol Off, Greenbelt, MD USA
基金
美国国家航空航天局;
关键词
type-II superlattice; infrared detector; quantum efficiency; digital; focal plane array; metasurface; flatlens;
D O I
10.1117/12.2619573
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this presentation, we will report our recent efforts in achieving high performance in Antimonides type-II superlattice (T2SL) based infrared photodetectors using the barrier infrared detector (BIRD) architecture. The high operating temperature ( HOT) BIRD focal plane arrays ( FPAs) offer the same high performance, uniformity, operability, manufacturability, and affordability advantages as InSb. However, mid-wavelength infrared ( MWIR) HOT-BIRD FPAs can operate at significantly higher temperatures (> 150K) than InSb FPAs (typically 80K). Moreover, while InSb has a fixed cutoff wavelength (similar to 5.4 mu m), the HOT-BIRD offers a continuous adjustable cutoff wavelength, ranging from similar to 4 mu m to > 15 mu m, and is therefore also suitable for long wavelength infrared ( LWIR) as well. The LWIR detectors based on the BIRD architecture has also demonstrated significant operating temperature advantages over those based on traditional p-n junction designs. Two 6U SmalSat missions CIRAS (Cubesat Infrared Atmospheric Sounder) and HyTI (Hyperspectral Thermal Imager) are based on JPL's T2SL BIRD FPAs. Based on III-V compound semiconductors, the BIRD FPAs offer a breakthrough solution for the realization of low cost (high yield), high-performance FPAs with excellent uniformity and pixel-to-pixel operability. Furthermore, we will discuss the advantages of the utilization of all digital read out integrated circuits with HOT-BIRDs.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Mid-wavelength high operating temperature barrier infrared detector and focal plane array
    Ting, David Z.
    Soibel, Alexander
    Khoshakhlagh, Arezou
    Rafol, Sir B.
    Keo, Sam A.
    Hoglund, Linda
    Fisher, Anita M.
    Luong, Edward M.
    Gunapala, Sarath D.
    APPLIED PHYSICS LETTERS, 2018, 113 (02)
  • [22] LONG-WAVELENGTH INFRARED SPECTROMETER
    ZHUKOV, AG
    OPTIKA I SPEKTROSKOPIYA, 1963, 14 (03): : 422 - 424
  • [23] Mid-wavelength type II InAs/GaSb superlattice infrared focal plane arrays
    Zhou, Xuchang
    Li, Dongsheng
    Huang, Jianliang
    Zhang, Yanhua
    Mu, Yingchun
    Ma, Wenquan
    Tie, Xiaoying
    Zuo, Dafan
    INFRARED PHYSICS & TECHNOLOGY, 2016, 78 : 263 - 267
  • [24] Two-stack indirect-barrier/triple-coupled quantum well infrared detector for mid-wavelength and long-wavelength infrared dual band detection
    Chiang, JC
    Li, SS
    Singh, A
    APPLIED PHYSICS LETTERS, 1997, 71 (24) : 3546 - 3548
  • [25] High performance mid-wavelength quantum dot infrared photodetectors for focal plane arrays
    Razeghi, Manijeh
    Lim, Ho-Chul
    Tsao, Stanley
    Taguchi, Maho
    Zhang, Wei
    Quivy, Alain Andre
    INFRARED SPACEBORNE REMOTE SENSING XIV, 2006, 6297
  • [26] Studies on InAs/GaAsSb mid-wavelength interband cascade infrared focal plane arrays
    Zhou Yi
    Chai Xu-Liang
    Tian Yuan
    Xu Zhi-Cheng
    Huang Min
    Xu Jia-Jia
    Huang Ai-Bo
    Bai Zhi-Zhong
    Chen Hong-Lei
    Ding Rui-Jun
    Chen Jian-Xin
    He Li
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2019, 38 (06) : 745 - 750
  • [27] HgCdTe focal plane arrays for dual-color mid- and long-wavelength infrared detection
    E. P. G. Smith
    L. T. Pham
    G. M. Venzor
    E. M. Norton
    M. D. Newton
    P. M. Goetz
    V. K. Randall
    A. M. Gallagher
    G. K. Pierce
    E. A. Patten
    R. A. Coussa
    K. Kosai
    W. A. Radford
    L. M. Giegerich
    J. M. Edwards
    S. M. Johnson
    S. T. Baur
    J. A. Roth
    B. Nosho
    T. J. De Lyon
    J. E. Jensen
    R. E. Longshore
    Journal of Electronic Materials, 2004, 33 : 509 - 516
  • [28] Modulation transfer function measurements of Type-II mid- wavelength and long-wavelength infrared superlattice focal plane arrays
    Rafol, Sir B.
    Gunapala, Sarath D.
    Keo, Sam A.
    Ting, David Z.
    Soibel, Alex
    Khoshakhlagh, Arezou
    Hill, Cory J.
    Luong, Edward
    Fisher, Anita M.
    Mumolo, Jason M.
    Liu, John K.
    Pepper, Brian
    INFRARED PHYSICS & TECHNOLOGY, 2019, 96 : 251 - 261
  • [29] Mid-wavelength infrared unipolar nBp superlattice photodetector
    Kazemi, Alireza
    Myers, Stephen
    Taghipour, Zahra
    Mathews, Sen
    Schuler-Sandy, Ted
    Lee, Seunghyun
    Cowan, Vincent M.
    Garduno, Eli
    Steenbergen, Elizabeth
    Morath, Christian
    Ariyawansa, Gamini
    Scheihing, John
    Krishna, Sanjay
    INFRARED PHYSICS & TECHNOLOGY, 2018, 88 : 114 - 118
  • [30] HgCdTe focal plane arrays for dual-color mid- and long-wavelength infrared detection
    Smith, EPG
    Pham, LT
    Venzor, GM
    Norton, EM
    Newton, MD
    Goetz, PM
    Randall, VK
    Gallagher, AM
    Pierce, GK
    Patten, EA
    Coussa, RA
    Kosai, K
    Radford, WA
    Giegerich, LM
    Edwards, JM
    Johnson, SM
    Baur, ST
    Roth, JA
    Nosho, B
    De Lyon, TJ
    Jensen, JE
    Longshore, RE
    JOURNAL OF ELECTRONIC MATERIALS, 2004, 33 (06) : 509 - 516